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Abstract. In this paper, a neural network adaptive backstepping control scheme for
uncertain unified chaotic systems is proposed. During the controller design, radial basis
function (RBF) neural networks are used to approximate packaged unknown nonlineari-
ties, and then an adaptive neural controller is proposed based on backstepping technique.
The developed control scheme guarantees that all the signals involoved are bounded. Sim-
ulation results are applied to demonstrating the feasibility of the suggested control scheme.
Keywords: Adaptive neural control, Unified chaotic system, Input saturation

1. Introduction. In the past decades, many researchers have been actively studying the
control or synchronization of chaotic systems since a series of electronic, mechanical and
chemical systems exhibit chaotic dynamics. So far, many remarkable control strategies
have been proposed. In [1-5], several adaptive control schemes were presented for un-
certain Lorenz system with unknown parameters. Furthermore, the problem of adaptive
control of uncertain Lü system is reported in [1, 2], and in [3, 4], the adaptive control for
uncertain unified chaotic system was proposed. To reduce the number of update laws,
Chen et al. [5] presented an adaptive fuzzy control scheme with two controllers to con-
trol unified chaotic systems. In addition, the control of nonlinear systems preceded by
saturation nonlinearities has been an active topic since the saturation nonlinearities are
common in many practical systems. The existence of input saturation gravely limits the
system performance or gives rise to undesirable inaccuracy. Therefore, the advanced con-
trol techniques to handle the effects of saturation have been called upon and have been
studied for decades. In [7], Chen et al. proposed a robust adaptive neural control for a
class of MIMO nonlinear systems with input nonlinearities. Wen et al. [8] investigated
the problem of adaptive control for a class of uncertain nonlinear systems in the presence
of input saturation and external disturbance, in which two new schemes are developed to
compensate for the effects of the saturation nonlinearity and disturbances.

Based on the above observations, we consider the problem of robust adaptive neural
control for uncertain unified chaotic systems with input saturation. During the controller
design, RBF neural networks are used to approximate the uncertain nonlinear function
and backstepping technique is employed to construct an adaptive controller. The proposed
neural-based adaptive controller ensures the boundedness of all signals in the closed-loop
system. Finally, the theoretic results are further illustrated through a numerical example.

The remainder of this paper is organized as follows. The problem formulation and
preliminaries are given in Section 2. An adaptive neural control scheme is presented in
Section 3. The simulation example is given in Section 4, followed by Section 5 which
concludes the work.
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2. Problem Statement and Preliminaries. In this paper, we consider the uncertain
unified chaotic system described by ṡ1 = a1(s2 − s1),

ṡ2 = a2s1 − s1s3 − a3s2,
ṡ3 = s1s2 − a4s3 + u,

(1)

where a1 = 25β + 10, a2 = 28 − 35β, a3 = 1 − 29β and a4 = β+8
3

with β ∈ [0, 1] being
an uncertain parameter, si, i = 1, 2, 3, are the system states, and u denotes the system
input subject to nonlinear saturation given by

u = sat(v) =

{
sign(v)uM , |v| ≥ uM ,
v, |v| < uM ,

(2)

where uM is an unknown parameter of input saturation, and v is input signal of the
saturation nonlinearity.

From (2), the backstepping technique cannot be applied to designing controller in a
direct manner since there exist sharp corners when |v| = uM . In order to handle this prob-
lem, a smooth function is applied to estimating the saturation function with a bounded
error and defined as

g(v) = uM ∗ tanh(v/uM) = uM ∗ ev/uM − e−v/uM

ev/uM + e−v/uM
. (3)

Further, sat(v) in (2) is described as

sat(v) = g(v) + d(v), (4)

where d(v) = sat(v) − g(v) can be bounded as

|d(v)| = |sat(v) − g(v)| ≤ uM(1 − tanh(1)) = D. (5)

By mean-value theorem [6], there exists a constant µ (0 < µ < 1) such that

g(v) = g(v0) + gvµ(v − v0), (6)

where gvµ = ∂g(v)
∂v

|v=vµ , vµ = µv +(1−µ)v0. Select v0 = 0. We rewrite (6) in the following
form:

g(v) = gvµv. (7)

To facilitate the controller design, the following assumption is imposed.

Assumption 2.1. For the function gvµ in (6), there exists an unknown positive constant
gm such that

0 < gm ≤ gvµ ≤ 1. (8)

The objective is to construct a robust adaptive neural controller v for the system (1)
such that all signals in the closed-loop system remain bounded.

In the following, RBF neural networks will be used to model any continuous function
f(Z) :Rn→R,

fnn(Z) = W T S(Z), (9)

where Z ∈ ΩZ ⊂ Rq is the input vector with q being the neural networks input di-
mension, weight vector W = [w1, w2, . . . , wl]

T ∈ Rl, l > 1 is the neural networks
node number, and S(Z) = [s1(Z), s2(Z), . . . , sl(Z)]T means the basis function vector
with si(Z) being chosen as the commonly used Gaussian function of the form si(Z) =

exp
[
−(Z − µi)

T (Z − µi)/η
2
i

]
, i = 1, 2, . . . , l, where µi = [µi1, µi2, . . . , µiq]

T is the center
of the receptive field and ηi is the width of the Gaussian function. In [9], it has been
indicated that with sufficiently large node number l, the RBF neural networks (9) can
approximate any continuous function f(Z) over a compact set ΩZ ⊂ Rq to any accuracy
ε > 0 as f(Z) = W ∗T S(Z) + δ(Z), ∀z ∈ Ωz ∈ Rq, where W ∗ is the ideal constant weight
vector and δ(Z) denotes the approximation error and satisfies | δ(Z) |≤ ε.
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3. Adaptive Neural Control. An adaptive neural backstepping control scheme will be
proposed, which is developed based on the following coordinate transformation:

zi = xi − αi−1, i = 1, 2, 3, (10)

where α0 = 0, and αi is a virtual control signal. The real controller v will be constructed
in the final step to stabilize the whole systems.

Step 1: Based on z1 = s1, one has

ż1 = a1(s2 − s1). (11)

Consider a Lyapunov function V1 = 1
2
z2
1 . Then, the time derivative of V1 is

V̇1 = z1a1(s2 − s1) = a1z1z2 + z1a1(α1 − s1), (12)

where z2 = s2 − α1. Noted that s1 = z1, we construct a virtual control input α1 as

α1 = −k1z1 (13)

with k1 > −1 being a design parameter. By substituting (13) into (12), one has

V̇1 = −a1(k1 + 1)z2
1 + a1z1z2, (14)

where the term a1z1z2 will be handled in Step 2.
Step 2: In this step, the singularity caused by −s1s3 in the second subsystem of (1) is

dealt with. Based on z2 = s2 − α1, one has

ż2 = ṡ2 − α̇1

= −s1s3 − a3s2 + a2s1 + k1a1(s2 − s1)

= −s1s3 − (a3 − k1a1)z2 + (a3 − k1a1)k1s1 + a2s1 − k1a1s1. (15)

Choose a Lyapunov function candidate as

V2 = V1 +
1

2
z2
2 +

1

2γ1

p̃2, (16)

where γ1 is a positive design constant and p̃ = p − p̂ with p̂ being the estimation of
unknown constant p.

Then, we have

V̇2 = V̇1 + z2{−s1s3 − (a3 − k1a1)z2 + (a3 − k1a1)k1s1 + a2s1 − k1a1s1} −
1

γ1

p̃ ˙̂p

= −a1(k1 + 1)z2
1 − (a3 − k1a1)z

2
2 − z1z2z3 + a1z1z2 + z2{−s1α2 + k1(a3 − k1a1)s1

+a3s1 − k1a1s1} −
1

γ1

p̃ ˙̂p

= −a1(k1 + 1)z2
1 − (a3 − k1a1)z

2
2 − z1z2z3 − z1z2{α2 − p} − 1

γ1

p̃ ˙̂p, (17)

where p = k1(a3−k1a1)+a3−k1a1 +a1 is an unknown constant. Now, we design a virtual

control α2 and adaption law ˙̂p as

α2 = p̂, (18)

˙̂p = −λ1p̂ + γ1z1z2. (19)

Furthermore, we can rewrite (17) as

V̇2 = −a1(k1 + 1)z2
1 − (a3 − k1a1)z

2
2 − z1z2z3 +

λ1

γ1

p̃p̂

≤ −a1(k1 + 1)z2
1 − (a3 − k1a1)z

2
2 −

λ1

2γ1

p̃2 +
λ1

2γ1

p2 − z1z2z3, (20)

where (a3 − k1a1) > 0.
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Step 3: Actual control v will be constructed in this step. By z3 = s3 −α2, (4) and (7),
one has

ż3 = s1s2 − a4s3 + gvµv + d(v) − α̇2. (21)

Consider a Lyapnov function as

V3 = V2 +
1

2
z2
3 +

gm

2γ2

θ̃2, (22)

where γ2 is a positive design parameter and θ̃ = θ − θ̂ is parameter error.
From (20) and (21), the time derivative of (22) is described by

V̇3 ≤ −a1(k1 + 1)z2
1 − (a3 − k1a1)z

2
2 −

λ1

2γ1

p̃2

+
λ1

2γ1

p2 + z3(gvµv + d(v) + f(Z)) − z2
3 −

gm

γ2

θ̃
˙̂
θ, (23)

where f(Z) = s1s2 − a4s3 − α̇2 − z1z2 + z3 with Z = [s1, s2, s3]
T ∈ ΩZ ⊂ R3. Since

a4 = β+8
3

with β being an unknown constant, f(Z) cannot be employed to design an
actual controller v. To deal with this problem, RBF neural networks W T S(Z) can be
used to estimate f(Z) such that, for any given positive constant ε,

f(Z) = W T S(Z) + δ(Z), |δ(Z)| ≤ ε (24)

where δ(Z) is approximation error. Further, we can obtain

z3f(Z) = z3W
T S(Z) + z3δ(Z)

≤ gm

2a2
z2
3θS

T (Z)S(Z) +
1

2
a2 +

1

2
z2
3 +

1

2
ε2, (25)

where the unknown constant θ = ∥W∥2

gm
and a is a design parameter. Substituting (24)

into (23) and using (25) result in

V̇3 ≤ −a1(k1 + 1)z2
1 − (a3 − k1a1) z2

2 −
λ1

2γ1

p̃2 +
λ1

2γ1

p2

+z3

(
gvµv + d(v)

)
− 1

2
z2
3 +

gm

2a2
z2
3θS

T (Z)S(Z) +
1

2
a2 +

1

2
ε2 − gm

γ2

θ̃
˙̂
θ. (26)

At the present stage, construct an actual controller as

v = −k2z3 −
1

2a2
z3θ̂S

T (Z)S(Z), (27)

where k2 > 0 is a design constant and θ̂ is the estimation of θ. Then, we can obtain

z3(gvµv + d(v)) ≤ −k2gmz2
3 −

θ̂

2a2
gmz2

3S
T (Z)S(Z) +

1

2
z2
3 +

1

2
D2. (28)

Furthermore, combining (26) with (27) results in

V̇3 ≤ −a1(k1 + 1)z2
1 − (a3 − k1a1)z

2
2 − k2gmz2

3 −
λ1

2γ1

p̃2 +
λ1

2γ1

p2

+
1

2
a2 +

1

2
ε2 +

gm

γ2

θ̃
( γ2

2a2
z2
3S

T (Z)S(Z) − ˙̂
θ
)

. (29)

Choose an adaption law as

˙̂
θ = −λ2θ̂ +

γ2

2a2
z2
3S

T (Z)S(Z). (30)

Then, substituting (30) into (29) gives

V̇3 ≤ −a1(k1 + 1)z2
1 − (a3 − k1a1)z

2
2 − k2gmz2

3 −
λ1

2γ1

p̃2 +
λ1

2γ1

p2
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+
1

2
a2 +

1

2
ε2 +

λ2

γ2

gmθ̃θ̂. (31)

By using the following inequality

gmλ2

γ2

θ̃θ̂ ≤ −gmλ2

2γ2

θ̃2 +
gmλ2

2γ2

θ2,

(29) can be rewritten as

V̇3 ≤ −a1(k1 + 1)z2
1 − (a3 − k1a1)z

2
2 − k2gmz2

3 −
λ1

2γ1

p̃2 − λ2gm

2γ2

θ̃2

+
λ2gm

2γ2

θ2 +
λ1

2γ1

p2 +
1

2
a2 +

1

2
ε2. (32)

Now, the main result will be summarized as the following theorem.

Theorem 3.1. Consider the chaotic system (1), the controller (27) and adaptive law (30)
under Assumption 2.1. Then, for bounded initial conditions, all signals in the closed loop
system are uniformly ultimately bounded.

Proof: Choose a Lyapunov function candidate as V = Vn. Then, its time derivative is

V̇ ≤ −a0V + b0, t ≥ 0, (33)

where a0 = min{2a1(k1 + 1), (a3 − k1a1), 2k2gm, λi, i = 1, 2.} and b0 = λ2gm

2γ2
θ2 + λ1

2γ1
p2 +

1
2
a2 + 1

2
ε2.

Therefore, we can conclude that all signals in the closed-loop system are uniformly
ultimately bounded. Then, v is also bounded.

4. Numerical Example. In this section, the simulation is run for β = 0.8, which denotes
Lü system. The input saturation limit is chosen as uM =100. Based on Theorem 3.1,
construct neural-based adaptive control input signals α1 in (13), α2 in (18) and v in (27)

with adaption laws p̂ in (19) and θ̂ in (30). The design parameters are chosen as follows:
k1 = 0.05, k2 = 1, a = 3, λ1 = 0.1, λ2 = 0.5 and γ1 = γ2 = 1. Moreover, the initial

conditions are given by [s1(0), s2(0), s3(0)]T = [10, 10, 10]T , and
[
p̂(0), θ̂(0)

]T

= [0, 0]T .

The simulation results indicate that the proposed controller guarantees the boundedness
of all the signals in the closed-loop system. The details are shown in Figures 1-4.

0 1 2 3 4 5
−10

0

10

20

30

40

50

Time(Sec)

s
1

s
2

s
3

Figure 1. State variables s1,
s2 and s3

0 1 2 3 4 5 6
−10

0

10

20

30

40

50

60

70

80

90

Time(Sec)

u

Figure 2. The true control
input u



1426 H. WANG, W. QIAN, Q. ZHOU AND L. LIU

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

Time(Sec)

p̂

Figure 3. The adaptive pa-
rameter p̂

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

Time(Sec)

θ̂

Figure 4. The adaptive pa-
rameter θ̂

5. Conclusion. This paper proposes an adaptive neural control strategy for uncertain
unified chaotic systems with input saturation. The presented adaptive neural controller
ensures that all signals in the closed-loop system are bounded. Simulation results further
demonstrate the effectiveness of the proposed control scheme. Our future research will
mainly focus on the output-feedback control for the original system (1) based on the result
in this paper.
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[3] S. Chen and J. Lü, Synchronization of an uncertain unified chaotic system via adaptive control,
Chaos Solitons and Fractals, vol.14, no.4, pp.643-647, 2002.

[4] G. L. Cai and W. T. Tu, Adaptive backstepping control of the uncertain unified chaotic system,
International Journal of Nonlinear Science, vol.4, no.1, pp.17-24, 2007.

[5] B. Chen, X. P. Liu and S. C. Tong, Adaptive fuzzy approach to control unified chaotic systems,
Chaos Solitons and Fractals, vol.34, no.4, pp.1180-1187, 2007.

[6] T. M. Apostol, Mathematical Analysis, Addison-Wesley, Reading, MA, 1963.
[7] M. Chen, S. S. Ge and B. B. Ren, Adaptive tracking control of uncertain MIMO nonlinear systems

with input constraints, Automatica, vol.47, no.3, pp.452-455, 2011.
[8] C. Y. Wen, J. Zhou, Z. T. Liu and H. Y. Su, Robust adaptive control of uncertain nonlinear systems

in the presence of input saturation and external disturbance, IEEE Trans. Autom. Control, vol.56,
no.7, pp.1672-1678, 2011.

[9] R. M. Sanner and J. E. Slotine, Gaussian networks for direct adaptive control, IEEE Trans. Neural
Network, vol.3, no.6, pp.837-863, 1992.


