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Abstract. In this paper, an approach based on hidden Markov models (HMM) is ap-
plied to segmenting multivariate time series. In this algorithm, each observation in the
underlying time series is dependent on a corresponding hidden state, and the segmen-
tation problem comes down to finding the hidden states. When related parameters are
given, the states can be obtained under a maximum likelihood framework using the Viterbi
algorithm. Some meaningful methods including vector autoregression (VAR) models are
utilized to estimate the parameters. In this way, the state estimation step and the param-
eter estimation step will perform repeatedly until the convergence condition is satisfied.
The segmentation procedure is evaluated by a hydrometeorological time series.
Keywords: Hidden Markov model, Segmentation, Multivariate time series, Vector au-
toregression

1. Introduction. The hidden Markov model (HMM) is a simple dynamic Bayesian net-
work. In an HMM, the (hidden) states are considered to be a Markov process. In recent
years, different types of hidden Markov models have been used in pattern recognition
[8, 10], and time series segmentation [5, 6].

As a particular type of clustering, time series segmentation aims to partition a given
time series into segments with similar characteristics. Due to its importance for hy-
drometeorological time series, several segmentation approaches have been proposed. For
example, [5] proposed an HMM segmentation procedure to partition univariate hydrologi-
cal and environmental time series. In [6], shifting means hidden Markov models have been
applied to segmenting hydrological time series. Besides, [7] employed dynamic program-
ming (DP) algorithm to partition time series into segments, and Bayesian information
criterion (BIC) [9] is applied to determining the global optimal segmentation for every
segmentation order. [4] generalized the DP segmentation approach to segment multivari-
ate time series. [3] incorporated the remaining cost concept into the DP algorithm to
segment long time series.

As discussed by [4, 11], it is helpful to detect sudden changes and segment multivari-
ate time series. In fields such as climate change studies and wind resources, time series
segmentation is useful for understanding their characteristics in order to model them, or
to predict possibilities of some extreme cases. This paper aims to generalize the HMM
segmentation approach proposed by [5] to partition multivariate time series. The seg-
mentation problem is transformed into finding states. To estimate related parameters,
some meaningful approaches are presented. The vector autoregression (VAR) model is
incorporated into the HMM segmentation algorithm as an alternative. Then the states
can be calculated by the Viterbi algorithm to maximize log-likelihood function.
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The rest of this paper is organized as follows. In Section 2, formulation of the segmen-
tation problem is introduced. In Section 3, the segmentation approach is given including
the state and parameter estimation. Experimental results of the HMM segmentation
algorithm are presented in Section 4. Section 5 shows some conclusions.

2. Definitions and Formulation of the Segmentation Problem. Let x = [x1,x2,
. . . , xT ] be a d-dimensional multiple time series, with xt = [x1t, . . . , xdt]

T . Time series
segmentation aims to find a segmentation t = [t0, t1, . . . , tN−1, tN ], which satisfies 0 =
t0 < t1 < · · · < tN−1 < tN = T . Here, t0, t1, . . . , tN−1, tN are called change points,
and [ti−1 + 1, ti] forms the i-th segment and the number of segments N is called the
segmentation order.

In what follows, the segmentation problem is explained under the framework of HMM.
Let X be a d-dimensional random vector, at time t, the observation of Xt depends on
its corresponding state Zt, where Zt is not directly visible. Suppose Xt is a multivariate
normal random vector with mean µZt and covariance matrix ΣZt . In other words, if
Zt = zt is given, Xt ∼ N(µzt ,Σzt), that is

f(xt|zt) = (2π)−
d
2 |Σzt |−

1
2 exp
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2
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T Σ−1
zt
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)
(1)

Further, if X1, X2, . . ., XT are mutually independent under the conditions that Z1, Z2,
. . ., ZT are given, we have

f(x|z) = (2π)−
Td
2
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Let M and Σ be the sets of means and covariance matrices separately for all segments,
that is, M = [µ1,µ2, . . . , µN ] and Σ = [Σ1,Σ2, . . . ,ΣN ].

Denote the hidden state sequence of x = [x1,x2, . . . , xT ] as z = [z1, z2, . . . , zT ], which
can be calculated when x is given (see Section 3.1). Next, the one-to-one correspondence
between the states z = [z1, z2, . . . , zT ] and the segmentation t = [t0, t1, . . . , tN ] is ex-
plained. Given a state set z, the segmentation t is a set of the locations where zti ̸= zti+1,
i = 1, 2, . . . , N − 1. When a segmentation t is given, the state sequence is obtained as
zti−1+1 = · · · = zti = i, i = 1, 2, . . . , N .

In an HMM, the (hidden) state process Zt is a Markov process, that is

P (Zt = zt|Z1 = z1, . . . , Zt−1 = zt−1) = P (Zt = zt|Zt−1 = zt−1) (3)

Let the transition probability be Pi,j = P (Zt+1 = j|Zt = i), and then we have the joint
probability of Z1, Z2, . . . , ZT as

P (Z1 = z1, Z2 = z2, . . . , ZT = zT ) = πz0 · Pz0,z1 · Pz1,z2 · . . . · PzT−1,zT
(4)

where π is the initial probability, and π1 = 1, πi = 0, for i = 2, 3, . . . , N . Following [5],
we employ “left-to-right” continuous HMM [8], namely, the transition probability matrix
P is forward and Pi,j = 0 for i = 1, 2, . . . , N and j ̸= i, i+1 and PN,N = 1. Then we have
the transition probability matrix as

P =


P1,1 1 − P1,1

P2,2 1 − P2,2

. . . . . .
PN−1,N−1 1 − PN−1,N−1

1

 (5)
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3. Segmentation for Multivariate Time Series. This section describes an HMM
based segmentation approach for multivariate time series in detail. The HMM segmenta-
tion algorithm needs to repeat the state and parameter estimation step until the conver-
gence condition is satisfied. Section 3.1 reviews the Viterbi algorithm used to estimate
states. Parameter estimation methods are discussed in Section 3.2. Section 3.3 combines
the state and parameter estimation and shows the HMM segmentation procedure.

3.1. Viterbi algorithm. For a given time series x = [x1,x2, . . . , xT ], where xi is a
d-dimensional vector. Suppose the parameters M ,Σ,P are known, then the Viterbi
algorithm [2] can find an optimal state z = [z1, z2, . . . , zT ] by maximizing f(z|x), that is

ẑ = arg max
z

f(z|x) (6)

According to condition probability formula, the conditional probability of state z can be
obtained by

f(z|x) =
f(x, z)

f(x)
=

f(x|z)f(z)

f(x)
(7)

As f(x) is independent with z, we have

ẑ = arg max
z

f(z|x) = arg max
z

f(x,z) (8)

Based on Equations (2) and (4), the joint distribution of x and z can be calculated as
follows.

f(x,z) = f(x|z)f(z)

= (2π)−
Td
2

T∏
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(9)

Let L be the log-likelihood function of x and z, that is

L = ln f(x, z)

= −Td

2
ln(2π) +

T∑
t=1
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2
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T Σ−1
zt
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(10)

Then dynamic programming [1] approach is applied to computing the state set. The
pseudocode of the Viterbi algorithm is shown in Algorithm 1.

Algorithm 1 Viterbi Algorithm
Forward Recursion:
1: Set q1,0 = 1, q2,0 = q3,0 = · · · = qN,0 = 0;
2: for t = 1, 2, . . . , T do
3: for i = 1, 2, . . . , N do
4: qi,t = maxmax(1,i−1)≤j≤i (qj,t−1 · Pj,i · f(xt; µi,Σi))
5: ri,t = arg maxmax(1,i−1)≤j≤i (qj,t−1 · Pj,i · f (xt; µi,Σi))
6: end for
7: end for

Backward Recursion:

8: L̂N,T = max1≤i≤N(qi,T );
9: ẑT = arg max1≤i≤N(qi,T );

10: for t = T, T − 1, . . . , 1 do
11: ẑt−1 = rẑt,t

12: end for
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3.2. Parameter estimation. This section presents the methods to estimate the param-
eters M , Σ and P . Suppose a state set z = [z1, z2, . . . , zT ] is given, and the corresponding
segmentation is t = [t0, t1, . . . , tN ]. Then, to estimate M = [µ1,µ2, . . . , µN ], a feasible
method is

µ̂i =

∑ti
t=ti−1+1 xt

Ti

, i = 1, 2, . . . , N (11)

where Ti = ti − ti−1 is the length of the i-th segment.
Besides, vector autoregressive (VAR) model can be another alternative. Suppose x1,x2,

. . . , xT are generated by a VAR(p) process, that is

Xt = Φ0 + Φ1Xt−1 + · · · + ΦpXt−p + at (12)

where at is a d-dimensional white noise, and p is the order of autoregression. Φ0 is a
vector parameter of d dimension and Φ1, . . . , Φp are all d × d parameter matrices.

Suppose the data in the i-th segment satisfy

xt = Φ
(i)
0 + Φ

(i)
1 xt−1 + · · · + Φ(i)

p xt−p + a
(i)
t (13)

then the estimations Φ̂
(i)
0 , Φ̂

(i)
1 , . . . , Φ̂

(i)
p can be obtained based on the data [xti−1+1, . . . , xti ]

and least-square (LS) estimation approach. Then, the conditional expectation of each
point Xt is

E(Xt|xt−1, . . . , xt−p, Zt = zt) = Φ̂
(zt)
0 + Φ̂

(zt)
1 xt−1 + · · · + Φ̂(zt)

p xt−p (14)

In this way, each segment gets a set of regressive parameters, that is to say, we can obtain

N sets of regressive parameters. At each iteration, this method aims to reestimate Φ
(i)
0 ,

Φ
(i)
1 , . . . , Φ

(i)
p , i = 1, 2, . . . , N , rather than reestimate M .

To estimate the covariance matrix Σi, i = 1, 2, . . . , N , one could use

Σ̂i =
1

Ti − 1

ti∑
t=ti−1+1

(xt − µ̂i)(xt − µ̂i)
T (15)

Also, a simpler estimation is to set all Σi, i = 1, 2, . . . , N , to be equal. That is,

Σ1 = Σ2 = · · · = ΣN = Σ (16)

The estimation of Σ can be calculated by

Σ̂ =
1

T − 1

T∑
t=1

(xt − µ̂)(xt − µ̂)T (17)

where

µ̂ =
1

T

T∑
t=1

xt (18)

It should be noted that the estimation Equation (17) is independent with segmentation.
As to the estimation of transition probability matrix P , [5] shows three methods,

one of which is segmentation-independent. The experiments in [5] indicated that the
segmentation results obtained by using different methods are the same. Accordingly, this
paper selects a simpler method. As discussed in Section 2, we only need to estimate Pi,i,
i = 1, 2, . . . , N − 1. The estimation approach we used is

P̂i,i =
Ti − 1

Ti

(19)

where Ti is the length of the i-th segment.
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3.3. HMM segmentation algorithm. In this section, we integrate the state and pa-
rameter estimation step into the HMM segmentation algorithm. The inputs are the time
series x = [x1,x2, . . . , xT ], the number of segments and a termination variable ε. First,
a segmentation is randomly generated and the parameters M , Σ and P are initialized.
Then, at each iteration, the states set z is updated by the Viterbi algorithm, and the
parameters M , Σ and P are calculated based on the segmentation obtained from the
states. The aforementioned two steps will perform until the convergence of the log-
likelihood function L (Equation (10)). In this way, the optimal states ẑ can be solved,
and the corresponding segmentation t̂ can be obtained. Algorithm 2 gives the pseudocode
of the HMM segmentation algorithm.

Algorithm 2 HMM Segmentation Algorithm
Input:
1: Time series x;
2: The number of segments N ;
3: Termination value ε;

Output:
4: The segmentation t̂;

main:
5: Randomly generate a segmentation t(0);
6: Compute z(0) based on t(0);
7: Compute M (0) by Equation (11) (or Equation (14));
8: Compute Σ(0) by Equation (15);
9: Compute P (0) by Equation (19);

10: for t = 1, 2, . . . , Nsim do
11: State Estimation
12: Update z(t) by the Viterbi algorithm, and calculate the log-likelihood

function L(t);
13: Compute t(t) from z(t);
14: Parameter Estimation
15: Compute M (t) by Equation (11) (or Equation (14));
16: Compute Σ(t) by Equation (15);
17: Compute P (t) by Equation (19);
18: Termination Criterion
19: if

∣∣L(t) − L(t−1)
∣∣ < ε then

20: ẑ = z(t); M̂ = M (t); Σ̂ = Σ(t);
21: end if
22: Compute t̂ from ẑ.
23: end for

For univariate time series, [5] discussed the convergence of the HMM segmentation
algorithm, which is also viable for multivariate case. Suppose L(0), L(1),. . . converge to
L̂, which is a local maximum of L. That is, the obtained states ẑ (the corresponding
segmentation t̂) is a local optimal solution.

4. Experiments. In this section, the HMM segmentation approach is applied to seg-
menting a hydrometeorological time series plotted in Figure 1, which has been previously
used by [4, 11] (with a different temporal interval).

The HMM segmentation algorithms based on homogeneity of segment means and vector
autoregression (VAR) model separately are both run 10 trials for N = 2, 3, 4, 5. For each
N , the segmentation maximizing log-likelihood function L is selected to be the most
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Figure 1. Plots of wind direction, wind gusts and wind speed courtesy of
Arecibo, PR on 2013/10/01

Table 1. Optimal segmentation results of the series plotted in Figure 1,
with N = 2, 3, 4, 5. The means are estimated by Equation (11).

N Segmentation Log-likelihood
2 0 134 241 −1642.9
3 0 126 137 241 −1571.8
4 0 77 123 133 241 −1502.5
5 0 77 125 141 205 241 −1442.6

Table 2. Optimal segmentation results of the series plotted in Figure 1,
with N = 2, 3, 4, 5. The means are estimated by VAR model.

N Segmentation Log-likelihood
2 0 134 241 −1491.4
3 0 125 134 241 −1432.6
4 0 29 125 134 241 −1375.4
5 0 3 77 125 137 241 −1308.8

proper segmentation. Tables 1 and 2 show the segmentation results, and the maximum
log-likelihood for each N is listed in the last column.

When N is set to be 2, the segmentation obtained is 0, 134, 241, which is the same
as the global optimal segmentation given by [4] based on Bayesian information criterion
(BIC). In this paper, log-likelihood function L depends on the parameters M , Σ, P and
N . Due to the difference in optimal functions, for N = 3, 4, 5, the optimal segmentation
results are not equal.

Now, we turn to the selection of segmentation order. Several methods have been pro-
posed to select the optimal number of segments, see [4, 5, 7, 11]. For univariate time
series, [5] determined the number of segments based on log-likelihood function L, and
obtained satisfactory segmentation results. According to the experiments in our paper,
L increases with N for N = 2, 3, 4, 5. For multivariate time series, with the increasing of
dimension, the penalization in L on N may not be enough. However, we have calculated
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the optimal segmentation for N = 2, 3, 4, 5, and users can select a proper segmentation
based on their own judgments.

5. Conclusion. In this paper, a hidden Markov model (HMM) segmentation approach
is proposed to segment multivariate time series. This algorithm repeatedly performs
two steps: the state estimation and the parameter estimation. The Viterbi algorithm is
applied to calculating the states, and the parameters are estimated using some meaningful
methods. The experiments show that the algorithm is effective with good convergence.
In the HMM segmentation approach, the selection of segmentation order for multivariate
time series needs to be studied in the future.
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