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Abstract. Guided scrambling (GS) encoding evaluates all candidates codewords gener-
ated from all possible combinations of control bits to find a balanced code array with the
maximum strength value. In this paper, we applied binary particle swarm optimization
for finding balanced code array with good strength value. In the computational results,
we show average strengths and symbol balance errors from particle swarm optimization
heuristic. We find that the average strength value computed from particle swarm opti-
mization heuristic is quite tight to the GS encoding method using only 6% of the candidate
codewords.
Keywords: Guided scrambling, Conservative array, Particle swarm optimization, Holo-
graphic storage, Heuristic algorithm

1. Conservative Array and Guided Scrambling Coding. In holographic data stor-
age (HDS), interference pattern between an optical representation of data page and a ref-
erence beam is stored into the volume of the holographic material and retrieved through
the use of a charge-coupled device (CCD) reading 2-D pixel image data [1]. To increase
the reliability of the holographic systems, the pattern of ‘0’s and ‘1’s must satisfy modu-
lation constraints. It is required that in each row and column of the encoded array, there
are at least t transitions of 0 → 1 or 1 → 0. A binary array of this property is called a
conservative array of strength t [2,3]. Another constraint is to require that the occurrence
of ‘0’ and ‘1’ pixels should be equally likely.

One of the simple multimode encoding techniques is the guided scrambling (GS) ap-
proaches [4-6]. In GS, each source word of length n is combined with p control bits,
scrambled into n+p bit codeword, and then formatted into m×m square array. Encoder
evaluates the quality of all possible 2p codewords with respect to modulation constraints,
and the best codeword is selected and transmitted. The advantage of the GS coding is
its simplicity, but it must evaluate all 2p candidates to choose the best. In this paper, we
apply a binary particle swarm optimization algorithm to finding a good candidate array
with almost balanced high strength value.

The rest of this paper is organized as follows. In Section 2, we describe the proposed
binary particle swarm optimization for the GS coding and a simple neighborhood search
heuristic as well as the performance measures derived from the GS coding. In Section 3,
we compare the performance of the proposed particle swarm optimization heuristic and
the simple neighborhood search heuristic with respect to GS coding. Section 4 concludes
the paper.
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2. Binary Particle Swarm Optimization. Particle swarm optimization (PSO) is an
evolutionary algorithm where sets of particles are moving toward the global optimal so-
lution [7-9]. Each particle xi(t) ∈ {0, 1}d and population consist of M particles. At
iteration t, each particle xi(t), i = 1, . . . , M computes its velocity vector vi(t) using its
personal best solution pbest

i (t) and the current best global solution gbest(t). Notice that
pbest

i (t) = arg max {f(xi(t
′)) : t′ ≤ t} and gbest(t) = argmax {f(xi(t

′)) : t′ ≤ t,∀i} with re-
spect to the objective function f(x(t)). At the initialization, xi(t) is a random binary
vector and vi(t) = 0.

In the binary PSO, the velocity vector and solution update are described in the following
equations.

vi(t + 1) = wvi(t) + c1Ri1

(
pbest

i (t) − xi(t)
)

+ c2Ri2

(
gbest(t) − xi(t)

)
xij(t + 1) =

{
0 if U ≥ σ(vij(t + 1))
1 if U < σ(vij(t + 1))

,

where σ(x) = 1/(1+e−x) is the sigmoid function and U is a uniform (0, 1) random number,
Ri1, Ri2 are diagonal matrices where each diagonal element is from uniform (0, 1). Weights
w, c1, c2 are further defined as follows.

w = 1
/(

ϕ − 1 +
√

ϕ2 − 2ϕ
)

,

c1 = c2 = ϕw, ϕ ∈ [2.01, 2.4].

In this paper, ϕ = 2.2. Notice that although velocity vector vi(t) is a general real vector,
xi(t + 1) is still a binary vector.

Instead of searching better particles in the swarm, simple neighborhood search algo-
rithm can be applied to GSO coding. The following steps summarize the neighborhood
search heuristic. For x ∈ {0, 1}d, define 1-dimensional neighbor x̃k = ek ⊕ x, where ek

is the kth unit vector and ⊕ is modulo-2 addition. Similarly, 2-dimensional neighbor
x̃jk = x̃k ⊕ ej, j ̸= k. So, the neighbor vector is the one with bit-flipped in one or two po-
sitions from the original binary vector x. The improvement measure between two binary
vectors xpre and x is defined as ∆(x,xpre) = c1(t(x)−t(xpre))+c2(τ(x)−τ(xpre)), where c1,
c2 are positive constants, function t(x) is the strength value in the vector x represented
as m × m scrambled array (ci,j)

m
i,j=1 and τ(x) is the symbol balance penalty function.

We assume τ(x) = 0, if |
∑m

i,j=1 ci,j − m2/2| < 2, and τ(x) = −2|
∑m

i,j=1 ci,j − m2/2|.
Otherwise, one-dimensional neighborhood search heuristic is as follows.

Step 1. Iteration n = 0, begin with x(0) = (x1, . . . , xd) where xi are random binary
number.

Step 2. k̄ = argmax {∆(x̃(n)k,x(n))}
Step 3. If ∆(x̃(n)k̄,x(n)) > 0, x(n + 1) = x̃(n)k̄, n = n + 1, go to Step 2. Otherwise,

stop.

3. Computational Results. We applied binary PSO algorithm to GS encoding for
finding the balanced conservative array with the maximum strength. For this PSO, each
vector xi(t) is the control bit vector in {0, 1}p and the performance measure is defined
as f(xi(t)) = strength – max{symbol balance error −2, 0}. The symbol balance error is
computed as |

∑m
i,j=1 ci,j − m2/2|, where ci,j is the scrambled code in m×m array. Notice

that if one applies GS coding for m = 20, p = 10, encoder needs to evaluate all possible
210 candidate arrays. We set the population size M = ⌈2p/k⌉, where k ∈ {5, 7, 10, 14},
that is, the population size is approximately 7%, 10%, 14%, and 20% of the 2p GS coding
candidates. For example, when the number of control bit is 10, the candidates in the GS
coding is 1,024, while in the PSO, the smallest population we use is 74. Figure 1 shows
the average strength values for m = 10, 12, 14, 16, 18, 20. For each m, we considered cases
for control bit size p = 6, 7, 8, 9, 10 and for each (m, p) combination, we generated 20
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Figure 1. GS and PSO, neighborhood search strengths

Table 1. Average strength and symbol balance error

Population size Control bit size Average strength Symbol balance error

7%

6 6.45 1.25
7 6.65 1.25
8 6.9 1.25
9 7.05 0.7
10 7.1 1.15

10%

6 6.35 1.15
7 6.45 1.2
8 6.75 1.1
9 7 1.1
10 7.05 1.3

14%

6 6.35 1
7 6.85 1.3
8 6.85 1.15
9 6.95 1.25
10 7.05 0.95

20%

6 6.4 1.35
7 6.7 1.1
8 6.8 1
9 7.05 0.85
10 7.05 0.85

random cases. The average shown in Figure 1 is the average across all control bit sizes,
so that for each m, it is an average of 100 cases.

Comparing with the GS coding value, we find that the PSO lower bound is ranging from
97% to 67% as the size m increases. The PSO strength values between different population
sizes are all very close. So using only 7% of the GS coding candidates, PSO finds good
candidate array with enough strength value. Also, PSO lower bound always outperforms
the bound from neighborhood search heuristic. In neighborhood search heuristic, we set
c1 = 8, c2 = 1. Previously, different multimode coding for the conservative array suggests
strength t = 4 for 16 × 16 sized arrays [2]. Our computation shows that in GS coding,
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average strength in 16×16 cases is approximately 7 while the average strength from PSO
heuristic provides t ≈ 5. In Table 1, we show detailed results for m = 20, p = 6, 7, 8, 9, 10.
We also show the symbol balance error of the best solution. From Table 1, we can see
that in PSO, increasing the population size has minor effects on the strength values and
the symbol balance error. Zero symbol balance error means there are equal numbers of
0’s and 1’s in m×m array. The symbol balance error in the PSO optimal solution is less
than 1.25 in most cases.

4. Conclusion. Holographic storage is a promising candidate of the next-generation data
storage system. To increase capacity and reliability of the holographic system, achieving
the target bit error rate is essential and careful engineering of optical system combined
with the signal processing and modulation coding is required. This paper shows that a bi-
nary PSO algorithm is an effective multimode coding scheme to obtain balanced conserva-
tive array. Future research topic includes effective coding scheme for the two-dimensional
modulation constraints such as prohibiting isolated pixel or run-length condition and the
computation of asymptotic coding capacity of these modulation constrained codes.
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