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Abstract. Cluster ensemble is a hot research topic in machine learning field. It com-
bines different base clustering results to get a consensus one. In this paper, we de-
sign a semi-supervised spectral clustering ensemble (SSSCE) model, based on both semi-
supervised learning and spectral clustering algorithm. There are three contributions. The
first is that the base clustering results are represented as a similarity matrix, and pair-
wise constraints are used to modify the similarity matrix, which is guided by the semi-
supervised learning. The second is that spectral clustering algorithm is applied to pro-
cessing the similarity matrix for a consensus cluster result. Finally, some standard UCI
and Microsoft datasets are used for experiments and the experimental results show that
SSSCE outperforms other cluster ensemble algorithms as well as spectral clustering en-
semble.
Keywords: Semi-supervised learning, Semi-supervised spectral clustering ensemble,
Pairwise constraints, Similarity matrix

1. Introduction. Cluster ensembles address the problem of combining multiple cluster-
ings of a set of objects into a single consolidated clustering [1], and there are three primary
motivations for developing cluster ensembles. First, cluster ensembles can exploit and
reuse existing knowledge implicit in legacy clusterings. Moreover, cluster ensembles can
enable clustering over distributed datasets in cases where the raw data cannot be shared
or pooled together because of restrictions due to ownership, privacy, storage, etc. Also,
cluster ensembles can improve the quality and robustness of results. Therefore, many
algorithms have been proposed for cluster ensembles [2, 3], especially for the consensus
function [1, 4, 5, 6].

Note that the choice of consensus functions is very important for ensembles, and inap-
propriate consensus function will seriously affect the accuracy of the results. A family of
spectral clustering (SC) algorithm [7] emerging in recent years have shown great promise.
Compared with traditional clustering algorithms, SC has some obvious advantages. It
can recognize the clusters of unusual shapes and obtain the globally optimal solutions in
a relaxed continuous domain by eigen decomposition. In the existing cluster ensemble
algorithms, SC is often used as the clusterer to generate base clustering results [8, 9, 10].
However, SC is computationally expensive, and the overall efficiency of the algorithm will
be largely reduced if SC is used as the clusterer, whereas if SC is used as the consensus
function, better final results can be obtained.

Furthermore, semi-supervised learning can not only make the model or model param-
eters more accurate, but also increase the model stability and robustness by utilizing
some labeled data, of which a relatively common method is pairwise constraints [11]. Yet,
current algorithms for spectral clustering ensemble (SCE) are mostly unsupervised algo-
rithms [12, 13, 14], which cannot take advantages of the known information of datasets.
As a result, the precision, robustness, and stability of the algorithms are degraded.
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As to the analysis above, this paper presents a semi-supervised spectral clustering
ensemble model. It uses pairwise constraints derived from the labeled data to modify the
similarity matrix generated from multiple base clusterings, and reclusters the similarity
matrix with SC algorithm, which takes the advantages of both semi-supervised learning
and SC algorithm.

The remainder of this paper is organized as follows. We state the concept of semi-
supervised cluster ensemble and implementation scheme in Section 2. In Section 3, gener-
ation of diverse base clusterings is introduced. In Section 4, the formulation and algorithm
of SSSCE are presented. Experimental results in comparison with other methods are pro-
vided in Section 5. Conclusions are drawn in Section 6.

2. The Semi-Supervised Cluster Ensemble Problem. Suppose we are given a set
of objects O = {o1, o2, . . . , on}, with r being the number of clusterings of these n objects,
a consensus function Γ is defined as a function Nn×r → Nn mapping a set of clusterings

to an integrated clustering Γ : {λ(q)|q ∈ {1, 2, . . . , r}} → λ, in which λ(q) = {λ(q)
l |l ∈

{1, 2, . . . , k}} denotes a partitioning of objects set O into K clusters. Moreover, there are
two sets of pairwise constraints including must-links: M = {(oi, oj)|oi and oj are in the
same cluster}, and cannot-links: C = {(oi, oj)|oi and oj are in two different clusters}.

A reasonable goal for cluster ensembles is to seek a clustering that shares the most
information with the base clusterings. Besides, for semi-supervised cluster ensembles,
another goal is to learn a similarity matrix S such that the distances of point pairs in M
are as small as possible, while those in C are as large as possible.

In addition, semi-supervised cluster ensembles consist of two phases: the generation of
base clusterings and the combination of multiple base clustering results.

3. Generation of Diverse Base Clusterings. The first step of cluster ensembles is
to produce multiple clustering results with differences, which reflect the structure of data
sets from different aspects in favor of integration. At this stage, the different clustering al-
gorithms [15] and the same clustering algorithm with different initialization or parameters
are both useful for improving the diversity of the components.

Among the existing clustering algorithms, k-means algorithm is the simplest and effi-
cient one. However, it is well known that k-means clustering is sensitive to the initializa-
tion. Obviously, such a fact is not desirable for applications but useful for constructing an
ensemble. Therefore, we randomly select the parameter ki of the ith base k-means from
the preestablished interval [kmin, kmax] with uniform distribution in our method. Using
random initialization in base clustering not only avoids the cost of accurate initialization
for each individual k-means, but also provides the required diversity for cluster ensembles.

4. Spectral Clustering Ensemble with Pairwise Constraints. In this section, we
introduce how to combine the base clusterings, namely the r label vectors

{
λ(q)|q ∈

{1, 2, . . . , r}
}

generated from k-means with random initialization, with pairwise con-
straints and SC algorithm. The detailed steps are as follows.

4.1. Similarity matrix construction. The first step of combination is to transform
the label vectors into a suitable hypergraph H representation. The concatenated block
matrix H = H(1,2,...,r) =

(
H(1) . . . H(r)

)
defines the adjacency matrix of a hypergraph

with n vertices and
∑r

q=1 K(q) hyperedges, where H(q) =
{
ha|a ∈

{
1, 2, . . . , K(q)

}}
. Each

column vector ha specifies a hyperedge ha, where 1 indicates that the vertex corresponding
to the row is part of that hyperedge and 0 indicates that it is not.

Then, we construct the similarity matrix according to cluster-based similarity partition-
ing algorithm (CSPA) [1], which can be computed in one sparse matrix multiplication:

S =
1

r
HHT (1)
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where matrix HT is the transposition of matrix H, and S is n × n sparse matrix.

4.2. Similarity matrix modified with pairwise constraints. The second step of
combination is to modify the similarity matrix with pairwise constraints. Sij, any one
element of the similarity matrix S, represents the similarity of the point pair oi and oj.
If oi and oj are labeled in the same class, Sij equals 1. On the other hand, if oi and oj

are labeled in two diffierent classes, Sij equals 0.
So we make use of these limited degrees of supervision to modify the similarity matrix

S to improve the accuracy of cluster ensembles.
i) if the point pair (oi, oj) belongs to must-link constraint, Sij = 1;
ii) if the point pair (oi, oj) belongs to cannot-link constraint, Sij = 0.

4.3. Semi-supervised spectral cluster ensembles algorithm. In this subsection, we
introduce the third step of combination, in which the similarity matrix is reclustered with
SC algorithm described as below.

In general, SC first maps data sets into a new space by the eigenvectors of an affinity
matrix, which defines the similarities of data sets. Moreover, a Gaussian function was
often used as the similarity function with form

Wij = exp
(
−∥oi − oj∥2/2σ2

)
(2)

where σ is the scaling parameter, and Wij is the similarity of samples oi and oj. The
top k eigenvectors are used as k-dimension indicator vectors for samples. Then, a simple
clustering algorithm such as k-means clustering is used to get K clusters.

In conclusion, we design SSSCE algorithm by incorporating semi-supervised learning
and SC algorithm into the cluster ensemble process. SSSCE algorithm is summarized as
follows.

Algorithm: SSSCE (Semi-Supervised Spectral Cluster Ensembles)
Input: objects set O = {o1, o2, . . . , on}, number of clusters K, number of component clustering
r, M denotes the set of must-link data points, and C denotes the set of cannot-link data points

1. Generation of component clustering for ensemble
for q = 1 : r
kq: randomly selected from [kmin, kmax]
λ(q) = k-means(O, kq).
end for

2. Transform the given cluster label vectors {λ(q)|q ∈ {1, 2, . . . , r}} into hypergraph H.
3. Construct the similarity matrix S = 1

rHHT , and S ∈ Rn×n, H ∈ Rn×d.
4. Amend the similarity matrix S with pairwise constraint information: if the point pair

(oi, oj) belongs to M , Sij = 1; if the point pair (oi, oj) belongs to C, Sij = 0.
5. Form the affinity matrix W ∈ Rn×n defined by Wij = exp

(
−∥s(i) − s(j)∥2/2σ2

)
if i ̸= j,

and Wii = 0; s(i) and s(j) denote the ith and jth row of S.
6. Define D to be the diagonal matrix where D(i, i) is the sum of W ’s ith row, and construct

the matrix L = D−1/2WD−1/2.
7. Find the k largest eigenvectors x1, x2, . . . , xk of L, and form the matrix X = {x1, x2,

. . . , xk} ∈ Rn×k by stacking the eigenvectors in columns.
8. Form the matrix Y from X by renormalizing each of X’s rows to have unit length, i.e.,

Yij = Xij/
(∑

j X2
ij

)1/2
.

9. Treating each row of Y as a point in Rk, cluster them into K clusters via k-means.
10. Finally, assign the base point oi to cluster j if and only if row i of the matrix Y was

assigned to cluster j.

Output: K clusters of O.
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5. Experimental Study.

5.1. Datasets and evaluation criteria. In this section, we run experiments on data-
sets from UCI machine learning repository, and the number of instances, features and
classes in each data set are listed in Table 1.

Table 1. The number of the instances, features, and classes in each dataset

Dataset Instances Features Classes
beer 870 892 3

congressEW 435 16 2
aerosol 905 892 3
alph 814 892 3

alphabet 814 892 3
amber 880 892 3

ambulances 930 892 3
americanflag 873 892 3

anonovo 732 892 3
apple 871 899 3
seed 210 7 3

aquarium 922 892 3
arrow 834 892 3

balance 625 4 3
banana 840 892 3
baobab 900 892 3

For all datasets, there are two steps leading to the final consensus clustering. First, we
run k-means algorithms with random initialization to get a set of base clustering results.
Second, various cluster ensemble algorithms, including CSPA, HyperGraph Partitioning
Algorithm (HGPA), Meta-CLustering Algorithm (MCLA), SSSCE, Expectation Maxi-
mization consensus Number (EMcN), Quadratic Mutual Information consensus (QMIc),
and SCE, are applied to combining the base clustering results into a consensus clustering.

For evaluation, we use micro-precision [16] to measure accuracy of the consensus cluster
with respect to the true labels. The micro-precision is defined as:

MP =
1

n

K∑
h=1

ah (3)

where K is the number of clusters, n is the number of objects, and ah denotes the number
of objects in consensus cluster h that are correctly assigned to the corresponding class.
Then, 0 ≤ MP ≤ 1 with 1 indicating the best possible consensus clustering, which has
to be in full agreement with the class labels.

The adjusted rand index (ARI) [17] is another measure of the accuracy between two
clusterings. Let U and V be two partitions on dataset O and suppose that U is our
external criterion and V is a clustering result. Let nij be the number of objects that are
in both class ui and cluster vj. Let ni· and n·j be the number of objects in class ui and
cluster vj respectively. Then the ARI between these two partitions can be defined as:

ARI(U, V ) =

∑
ij

(
nij

2

)
−

[∑
i

(
ni·

2

) ∑
j

(
n·j

2

)]/(
n

2

)
1

2

[ ∑
i

(
ni·

2

)
+

∑
j

(
n·j

2

)]
−

[∑
i

(
ni·

2

) ∑
j

(
n·j

2

)]/(
n

2

) (4)
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If the partitions U and V are completely independent, the value of the adjusted rand
index ARI(U, V ) is 0, which means that nothing can be predicted about V by observing
U and vice versa. If the two partitions are the same, the value of the ARI is 1.

5.2. Experimental results. Given n objects, we first use k-means on 16 datasets to
generate 10 base clustering results for each dataset with 10 random initializations. Cluster
ensemble algorithms are then applied on the 10 results. The average MPs and standard
deviations over all datasets are reported in Table 2, and the ARIs are in Table 3. In
addition, the first column both in two tables is the average value of 10 k-means clustering
results, the maximum value of which is the second one.

The key observations from Table 2 can be summarized as follows: (i) SSSCE almost
always has a higher average MP than base clustering results, which means the consensus
clustering from SSSCE is indeed better than the base clusterings in quality; (ii) SSSCE
outperforms other cluster ensemble algorithms for most of the datasets in terms of average
MP, whereas the performance of SCE is not much better than other cluster ensemble
algorithms, which means that semi-supervised learning has a very important practical
significance to improve the performance of clustering.

Table 2. k-means with different initializations are used as base clustering
algorithms, and the results are average MPs and standard deviations for
different cluster ensemble algorithms. The highest MP among different
algorithms on each data set is bolded.

AK-means MK-means CSPA HGPA MCLA SSSCE EMcN QMIc SCE
beer .448±0.022 .543±0.000 .417±0.010 .427±0.044 .462±0.059 .682±0.199 .404±0.032 .439±0.065 .429±0.024

congressEW .853±0.005 .871±0.000 .828±0.000 .517±0.005 .867±0.008 .867±0.008 .871±0.000 .766±0.129 .871±0.000
aerosol .386±0.030 .493±0.000 .380±0.007 .394±0.013 .387±0.037 .598±0.079 .381±0.027 .414±0.069 .367±0.042
alph .358±0.012 .442±0.000 .426±0.004 .421±0.007 .342±0.008 .666±0.136 .372±0.037 .407±0.037 .340±0.007

alphabet .343±0.017 .442±0.000 .422±0.003 .427±0.009 .347±0.021 .603±0.085 .364±0.029 .394±0.036 .345±0.009
amber .638±0.026 .752±0.000 .523±0.001 .491±0.077 .577±0.062 .826±0.047 .645±0.062 .615±0.043 .596±0.055

ambulances .503±0.006 .520±0.000 .387±0.004 .414±0.002 .449±0.082 .726±0.000 .439±0.074 .410±0.082 .343±0.007
americanflag .450±0.019 .530±0.000 .430±0.004 .359±0.004 .455±0.031 .580±0.004 .463±0.055 .537±0.007 .443±0.045

anonovo .419±0.037 .518±0.000 .509±0.001 .434±0.032 .427±0.001 .662±0.124 .469±0.052 .472±0.052 .452±0.049
apple .640±0.007 .658±0.000 .617±0.000 .656±0.000 .612±0.002 .782±0.123 .610±0.003 .721±0.089 .612±0.002
seed .637±0.029 .895±0.000 .884±0.008 .614±0.040 .883±0.015 .886±0.031 .793±0.113 .753±0.121 .900±0.004

aquarium .497±0.041 .701±0.000 .401±0.018 .422±0.026 .550±0.079 .580±0.116 .407±0.046 .422±0.056 .387±0.051
arrow .465±0.017 .558±0.000 .478±0.006 .384±0.004 .500±0.002 .664±0.086 .494±0.009 .523±0.036 .500±0.000

balance .532±0.005 .594±0.000 .506±0.006 .422±0.002 .522±0.004 .715±0.094 .547±0.031 .583±0.047 .534±0.012
banana .460±0.008 .482±0.000 .450±0.003 .398±0.013 .483±0.005 .660±0.048 .473±0.013 .476±0.017 .484±0.003
baobab .531±0.024 .617±0.000 .438±0.003 .440±0.015 .484±0.015 .706±0.092 .518±0.048 .500±0.014 .500±0.006

Table 3. The results are ARIs for different cluster ensemble algorithms,
and the highest ARI among different algorithms on each data set is bolded.

AK-means MK-means CSPA HGPA MCLA SSSCE EMcN QMIc SCE
beer 0.0007 0.0070 0.0333 0.0209 0.0458 0.5977 0.0336 0.0309 0.0267

congressEW 0.0532 0.5316 0.4280 0.0000 0.5382 0.5355 0.5447 0.3301 0.5501
aerosol 0.0005 0.0054 0.0062 0.0044 0.0014 0.3523 −0.0027 0.0000 0.0035
alph 0.0005 0.0055 0.0182 0.0087 0.0099 0.4615 0.0177 0.0070 0.0120

alphabet 0.0009 0.0087 0.0170 0.0133 0.0055 0.3671 0.0199 0.0206 0.0100
amber 0.0292 0.2916 0.1860 0.1656 0.2061 0.8208 0.25486 0.2439 0.2214

ambulances 0.0022 0.0215 0.0137 −0.0003 0.0608 0.5083 0.02679 0.0294 0.0569
americanflag 0.0056 0.0560 0.0576 −0.0047 0.0306 0.2944 0.0513 0.0408 0.0246

anonovo 0.0085 0.0853 0.0858 0.0107 0.0776 0.3831 0.0697 0.0872 0.0905
apple 0.0005 0.0051 0.0046 −0.0020 0.0067 0.3652 0.0055 0.0047 0.0040
seed 0.0617 0.6173 0.7039 0.2166 0.7171 0.6838 0.6210 0.5517 0.7166

aquarium 0.0000 0.0000 0.0160 −0.0014 −0.0200 0.4258 0.0053 0.0010 0.0420
arrow 0.0064 0.0639 0.0577 0.0095 0.0580 0.3614 0.0772 0.0648 0.0552

balance 0.0126 0.1259 0.1188 0.0389 0.1337 0.4519 0.1316 0.1132 0.1548
banana 0.0068 0.0681 0.0561 0.0152 0.0741 0.5917 0.0722 0.0766 0.0804
baobab 0.0111 0.1114 0.0510 0.0258 0.0739 0.5311 0.1085 0.1059 0.0848
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Then we evaluate and calculate the accuracy of SSSCE by using ARI. Table 3 shows the
results. Compared with other cluster ensemble algorithms, SSSCE can perform just as
good or even better, while the ARI value of SCE is not higher, which shows the importance
of selection of consensus function and semi-supervised learning.

6. Conclusions. In this paper we introduced the cluster ensemble problem. We applied
SC algorithm to combining multiple base clusterings into a single consolidated clustering
and took advantage of semi-supervised thought to modify the similarity matrix generated
from the base clusterings. Experimental results on a very wide range of data sets show
that SSSCE outperforms SCE, as well as other cluster ensemble algorithms in terms of
accuracy. The direction of future work is how to place additional domain constraints
to yield consensus solutions that are useful and actionable in diverse applications, for
example, image segmentation.
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