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Abstract. In this paper, the finite-time H∞ control problem of a class of networked
control systems (NCSs) with time delay is investigated. The main results provided in
the paper are sufficient conditions for finite-time robust stability with an H∞ normal
bound γ̄ via state feedback. Firstly, an augmentation approach is proposed to model
NCSs with time delay as linear system. Secondly, based on finite time stability theory,
the sufficient conditions which guarantee that the underlying system is robustly stable
with an H∞ normal bound γ̄ over a finite-time interval are derived via linear matrix
inequalities (LMIs) formulation. Lastly, an illustrative example is given to demonstrate
the effectiveness of the proposed results.
Keywords: Networked control systems, Finite time control, Linear matrix inequalities

1. Introduction. Networked control systems (NCSs) are control systems in which sen-
sor data and control commands are being communicated over a wired or wireless com-
munication network. Compared with the traditional point-to-point wiring, the use of
the communication channels can reduce the costs of cables and power, simplify the in-
stallation and maintenance of the whole system, and increase the reliability. Moreover,
NCSs are applied in a broad range of systems, such as mobile sensor networks, remote
surgery, automated highway systems, unmanned aerial vehicles and multi-agent systems
[1-4]. However, the insertion of communication networks in feedback control loops makes
the NCSs analysis and synthesis complex [5], where much attention has been paid to the
delayed data packets of an NCSs due to network transmissions.

On the other hand, finite-time boundedness and stability can be used in all those
applications where large values of the state should not be attained, for instance in the
presence of saturations. However, most of the results in the literature focus on Lyapunov
stability. Some early results on finite-time stability (FTS) can be found in [6]. More
recently, the concept of FTS has been revisited in the light of recent results coming
from linear matrix inequalities (LMIs) theory, which has made it possible to find less
conservative conditions for guaranteeing FTS and finite time stabilization of discrete-
time and continuous-time systems [7-12]. In [13], the definition of finite-time H∞ control
is presented and a state feedback controller is designed which ensures that the closed-
loop system is finite-time bounded and reduces the effect of the disturbance input on the
controlled output to a prescribed level. However, a defect occurred in Lemma 3 in [13],
which plays a key role in H∞ finite-time bounded controller design. In [14], the defect
is addressed, and the corrected results are given. In [15], robust finite-time stabilization
problem for a family of uncertain singular Markovian jump systems is proposed.
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To the best of our knowledge, the finite-time H∞ control problem for NCSs with time
delay has not been fully investigated to date. Especially for the case where the plant
subjects to external interference, very few results related to NCSs are available in the
existing literature, which motivates the study of this paper. In this paper, the H∞ control
problem of a class of NCSs with time delay is studied. The sufficient conditions which
guarantee that the underlying system is robustly stable with an H∞ normal bound γ̄ over
a finite-time interval are derived via LMIs formulation. Lastly, an illustrative example is
given to demonstrate the effectiveness of the proposed methods.

This paper is organized as follows. An augmentation approach is proposed to model
NCSs with time delay as linear systems in Section 2. The sufficient conditions which
guarantee that the underlying system is robustly stable over a finite-time interval are given
via LMIs formulation in Section 3. Section 4 provides a numerical example to illustrate
the effectiveness of our results. Finally, Section 5 gives some concluding remarks.

2. Problem Formulation and Preliminaries. Consider NCS depicted in Figure 1
consists of three components: a plant to be controlled, a network such as the Internet,
and a controller.

Figure 1. Illustration of NCSs over communication network

In this paper, it is assumed that the plant is described by

ẋ(t) = Ax(t) + Bu(t) + Gw(t),
z(t) = Cx(t) + D1u(t) + D2w(t),

(1)

and time-invariant controller

u(kh) = −Kx(kh), k = 0, 1, 2, · · · , (2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, w(t) ∈ Rp is the exogenous
input, and z(t) ∈ Rp is the controlled output. A, B, G, C, D1, and D2 are known real
constant matrices with appropriate dimensions. We make the following assumption about
NCSs.

Assumption 2.1. During the finite time T , the exogenous input w(t) satisfies∫ T

0

wT (t)w(t)dt ≤ d2,

where d is a positive constant.

Then the system equation can be written as

ẋ(t) = Ax(t) + Bu(t) + Gw(t), t ∈ [kh + τ, (k + 1)h + τ),

z(t) = Cx(t) + D1u(t) + D2w(t),

u(t+) = −Kx(t − τ), t ∈ {kh + τ, k = 1, 2, · · · }.
(3)

Sampling the system with period h, we obtain

x(k + 1) = Φx(k) + Γ0(τ)u(k) + Γ1(τ)u(k − 1) + Ψw(k),
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z(k) = Cx(k) + D1u(k) + D2w(k),

where

Φ = eAh, Ψ =

∫ h

0

eAsGds, Γ0(τ) =

∫ h−τ

0

eAsBds, Γ1(τ) =

∫ h

h−τ

eAsBds.

Define x̃(k) = [xT (k), uT (k − 1)]T , z̃(k) = [zT (k), uT (k − 1)]T , and w̃(k) = [wT (k), 0T ]T .
Then we have the augmented closed-loop systems

x̃(k + 1) =
(
Ã + B̃K̃

)
x̃(k) + G̃w̃(k), (4)

z̃(k) =
(
C̃ + D̃1K̃

)
x̃(k) + D̃2w̃(k), (5)

where

Ã =

[
Φ Γ1(τ)
0 0

]
, B̃ =

[
−Γ0(τ)
−I

]
, C̃ =

[
C 0
0 I

]
,

D̃1 =

[
D1

0

]
, D̃2 =

[
D2 0
0 0

]
, G̃ =

[
Ψ 0
0 0

]
,

and K̃ is defined as follows

K̃ =
[
K 0

]
. (6)

Remark 2.1. According to Assumption 2.1, for finite positive integer N , the augmented
exogenous input vector w̃(k) satisfies the following condition

N∑
k=1

w̃T (k)w̃(k) ≤ d2. (7)

Remark 2.2. When the delay is longer than one sampling period, that is to say, h < τ <
lh, where l > 1, the augmented state vector x̃(k) is defined as

x̃(k) = [x(k), u(k − l), · · · , u(k − 1)]T .

The main aim of this paper is to find some sufficient conditions which guarantee that
the system (4) is robustly stable with an H∞ normal bound γ over a finite-time interval.
The general idea of finite-time stability concerns the boundedness of the state of a system
over a finite time interval for given initial conditions, and this concept can be formalized
through the following definitions.

Definition 2.1. System (4) is said to be finite-time bounded with respect to (α, d, β,R,N),
where R is a positive-definite matrix, 0 < α < β, if{

x̃T (0)Rx̃(0) ≤ α2∑N
k=1 w̃T (k)w̃(k) ≤ d2

=⇒ x̃T (k)Rx̃(k) ≤ β2, k ∈ {1, · · · , N}.

Definition 2.2. System (4) with w(k) = 0 is said to be finite-time stable with respect to
(α, β, R, N), where R is a positive-definite matrix, 0 < α < β, if

x̃T (0)Rx̃(0) ≤ α2 =⇒ x̃T (k)Rx̃(k) ≤ β2, k ∈ {1, · · · , N}.

Definition 2.3. The closed-loop networked control systems (4) and (5) are said to be
robustly stable with an H∞ normal bound γ, if the following hold

• System (4) is finite time boundedness.
• Under the assumption of zero initial condition, the controlled output z̃(k) satisfies

N∑
k=1

z̃T (k)z̃(k) < γ2

N∑
k=1

w̃T (k)w̃(k).



1478 Y. SUN AND H. TIAN

To this end, the following lemma will be essential for the proofs in the next section and
their proofs can be found in the cited references.

Lemma 2.1. (see [16]). For given state feedback control matrix K, system (4) is finite-
time bounded with respect to (α, d, β,R,N), if there exists a symmetric positive definite
matrix P and two scalars µ ≥ 1, γ ≥ 0, such that the following conditions hold (

Ã + B̃K̃
)T

P
(
Ã + B̃K̃

)
− µP

(
Ã + B̃K̃

)T

PG̃

G̃T P
(
Ã + B̃K̃

)
G̃T PG̃ − γ2I

 < 0, (8)

λ2

λ1

µNα2 +
1

λ1

µNγ2d2 < β2, (9)

where

λ1 = λmin

(
P̃

)
, λ2 = λmax

(
P̃

)
, P̃ = R−1/2PR−1/2.

3. Main Results. In this section, we will find a state feedback control matrix K, such
that systems (4) and (5) are robustly stable with an H∞ normal bound γ̄ over a finite-time
interval. We have the following theorem.

Theorem 3.1. For given state feedback control matrix K, systems (4) and (5) are robustly

stable with an H∞ normal bound γ̄ = γµ
N−1

2 , if there exists a symmetric positive definite
matrix P and two scalars µ ≥ 1, γ > 0, such that the following conditions hold[

ĀT PĀ + C̄T C̄ − µP ĀT PG̃ + C̄T D̃2

G̃T PĀ + D̃T
2 C̄ G̃T PG̃ + D̃T

2 D̃2 − γ2I

]
< 0, (10)

1

λ3

µNγ2d2 < β2, (11)

where

Ā = Ã + B̃K̃, C̄ = C̃ + D̃1K̃, P̃ = R−1/2PR−1/2, λ3 = λmin(P̃ ).

Proof: Note that [
C̄T C̄ C̄T D̃2

D̃T
2 C̄ D̃T

2 D̃2

]
=

[
C̄T

D̃T
2

] [
C̄ D̃2

]
≥ 0.

Therefore, condition (10) implies that[
ĀT PĀ − µP ĀT PG̃

G̃T PĀ G̃T PG̃ − γ2I

]
< 0. (12)

From Lemma 2.1, conditions (11) and (12) guarantee that the system (4) is finite-time
bounded with respect to (0, d, β, R, N). On the other hand, let V (x̃(k)) = x̃T (k)Px̃(k),
and then we have

V (x̃(k + 1)) =
[
x̃T (k) w̃T (k)

] [
ĀT PĀ ĀT PG̃

G̃T PĀ G̃T PG̃

] [
x̃(k)
w̃(k)

]
.

Due to condition (10), we have

V (x̃(k + 1)) ≤ µV (x̃(k)) + γ2w̃T (k)w̃(k) − z̃T (k)z̃(k). (13)

Applying iteratively (13) and noting that V (x̃(0)) = 0, we have

V (x̃(k)) < γ2

k∑
j=1

µk−jw̃T (j − 1)w̃(j − 1) −
k∑

j=1

µk−j z̃T (j − 1)z̃(j − 1), (14)
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which implies that

k∑
j=1

µk−j z̃T (j − 1)z̃(j − 1) < γ2

k∑
j=1

µk−jw̃T (j − 1)w̃(j − 1). (15)

Noting that µ ≥ 1, we have

k∑
j=1

µk−jw̃T (j − 1)w̃(j − 1) ≤ µk−1

k∑
j=1

w̃T (j − 1)w̃(j − 1), (16)

and
k∑

j=1

µk−j z̃T (j − 1)z̃(j − 1) ≥
k∑

j=1

z̃T (j − 1)z̃(j − 1). (17)

From (15)-(17), we can obtain

N∑
j=1

z̃T (j)z̃(j) < γ2µN−1

N∑
j=1

w̃T (j)w̃(j) = γ̄2

N∑
j=1

w̃T (j)w̃(j). (18)

This completes the proof. �
Now we turn back to our original problem, that is to find sufficient conditions which

guarantee that the system (3) with the controller (2) is finite-time bounded with respect
to (α, d, β,R,N). The solution of this problem is given by the following theorem.

Theorem 3.2. System (4) and (5) are robustly stable with an H∞ normal bound γ̄ =

γµ
N−1

2 , if there exist symmetric positive definite matrices Q1, Q2, a matrix L, and two
scalars µ ≥ 1, γ > 0, such that the following conditions hold

−µQ 0
(
ÃQ + B̃LS

)T (
C̃Q + D̃1LS

)T

0 −γ2I G̃T D̃T
2

ÃQ + B̃LS G̃ −Q 0

C̃Q + D̃1LS D̃2 0 −I

 < 0, (19)

λ4µ
Nγ2d2 < β2, (20)

where

Q̃ = R1/2QR1/2, λ4 = λmax(Q̃).

S and Q are defined as follows

S =

[
I 0
0 0

]
, Q =

[
Q1 0
0 Q2

]
.

In this case, the controller K is given by the first p columns of K̃ = LSQ−1, which is in
the form (6).

Proof: From condition (10) in Theorem 3.1, we have[
C̄T C̄ − µP C̄T D̃2

D̃T
2 C̄ D̃T

2 D̃2 − γ2I

]
+

[
ĀT

G̃T

]
P

[
Ā G̃

]
< 0. (21)

Applying Schur complement, we can obtainC̄T C̄ − µP C̄T D̃2 ĀT

D̃T
2 C̄ D̃T

2 D̃2 − γ2I G̃T

Ā G̃ −P−1

 < 0, (22)
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which implies that −µP 0 ĀT

0 −γ2I G̃T

Ā G̃ −P−1

 +

C̄T

D̃T
2

0

 [
C̄ D̃2 0

]
< 0. (23)

Using Schur complement again, (23) is equivalent to
−µP 0 ĀT C̄T

0 −γ2I G̃T D̃T
2

Ā G̃ −P−1 0

C̄ D̃2 0 −I

 < 0. (24)

Pre- and post-multiplying (24) by the symmetric matrix
−P−1 0 0 0

0 I 0 0
0 0 I 0
0 0 0 −I

 ,

we can obtain the equivalent condition of (10)
−µP−1 0 P−1ĀT P−1C̄T

0 −γ2I G̃T D̃T
2

ĀP−1 G̃ −P−1 0

C̄P−1 D̃2 0 −I

 < 0. (25)

Recalling that Ā = Ã + B̃K̃, C̄ = C̃ + D̃1K̃, and letting Q = P−1, K̃Q = LS, we obtain
that condition (25) is equivalent to (19). On the other hand, noting that Q = P−1, we
can obtain that

λmax(Q) =
1

λmin(P )
. (26)

Thus, condition (11) can be rewritten as in (20). This completes the proof. �
Remark 3.1. The chosen structures for matrices S and Q guarantee that K̃ is in the
form (6). In fact

K̃ = LSQ−1 = L

[
I 0
0 0

] [
Q1 0
0 Q2

]−1

= L

[
Q−1

1 0
0 0

]
=

[
K 0

]
. (27)

Remark 3.2. Condition (20) is not LMI. However, it is easy to check that condition (20)
can be guaranteed by

0 < Q̃ < I, (28)

γ2d2 − µ−Nβ2 < 0. (29)

4. Numerical Example. Consider the following system

ẋ(t) =

[
0 1
0 −0.1

]
x(t) +

[
0

0.1

]
u(t) +

[
1 0
0 1

]
w(t),

z(t) =

[
1 0
0 1

]
x(t) +

[
0.1
0.2

]
u(t) +

[
0.5 0
0 0.5

]
w(t).

(30)

It is assumed that h = 0.3s, τ = 0.1s, α = 0.3, d = 0.4, β = 0.5, R = I, N = 10.
Applying Theorem 3.2 with µ = 1 and γ = 1, it is found that the desired controller gain
is given by

K̃ = LSQ−1 =
[
K 0

]
=

[
−3.1623 −7.0775 0

]
.

The states of the closed-loop system caused by the obtained controller are shown in Figure
2 when the initial state is x(0) =

[
0.5 −0.5

]
. It can be seen that the closed-loop system

is robustly stable.
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Figure 2. The states of the closed-loop system

5. Conclusions. In this paper, we have considered the finite-time H∞ control problem
of a class of networked control systems (NCSs) subject to disturbance. Based on the
augmentation approach, the NCS with time delay is modeled as a linear system. The
sufficient conditions which guarantee that the underlying system is robustly stable with
an H∞ normal bound γ̄ over a finite-time interval are derived via LMIs formulation.
Lastly, an illustrative example is given to demonstrate the effectiveness of the proposed
results. The finite-time H∞ stabilization problem for NCSs with both packet dropout and
time delay is future work.
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