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Abstract. In this paper, a control policy based on reinforcement learning algorithm is
proposed for ship course due to the ship motion characteristics, which are big inertia,
nonlinearity and uncertainty. The framework of actor-critic is adopted in this algorithm
and two separated back propagation neural networks are used to implement actor and
critic. Without the mathematical model of the object and prior knowledge, the algorithm
can effectively control complex nonlinear system by trial-and-error learning. The simu-
lation results demonstrate that the autopilot has satisfied control performance, which is
robust to the external disturbances and nonlinearity of the ship motion.
Keywords: Ship course, Reinforcement learning, Actor-critic, Neural network

1. Introduction. Ship motion control design has been a challenge which is character-
ized by big inertial, nonlinear and time-varying uncertainties [1]. In the past, several
design methods have been proposed for autopilots such as classical control, adaptive
control, proportional-integrate derivative control (PID), and other modern control tech-
niques [2-4]. The autopilot based on PID has been designed and equipped on board since
1950s. However, owing to the ship’s complicated characteristics, there are some difficul-
ties in controlling the ship course perfectly by PID method. The majority of modern
control techniques have several limitations. The first one is that these methods have high
requirements for ship mathematical model, while ship motion with complicated charac-
teristics is difficult to establish accurate mathematical model. The second one is the
limitation of “explosion of complexity” in these control algorithms, which may lead to a
more complicated controller and a larger control input [5].

Reinforcement learning (RL) has been widely applied to human-level control, robot
control and so on [6,7]. Without the mathematical object model and the prior knowl-
edge, RL algorithm utilizes reinforcement signals provided by environment to evaluate
the current action and its effect in the future. Owing to the few information provided by
the external environment, RL must rely on its own experience through a lot of trial and
error to improve strategies to adapt to the environment and get good control quality [8].
The actor-critic RL algorithm used in this paper is evolved from the adaptive heuristic
critic (AHC) algorithm, which has been detailedly introduced by Sutton and Barto [8].
Compared with other algorithms, this algorithm needs minimal amount of calculation
to choose action and it is very useful in dealing with the no-Markov case [8]. However,
RL is rarely used for ship motion control up to the present. Therefore, in this paper, a
control policy based on actor-critic RL algorithm with two separated back propagation
(BP) neural networks for ship course control is designed. To verify the performance of the
proposed method, the external disturbances are considered, and a traditional PID course
autopilot is also designed to compare with the proposed RL method. Then, the compared
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simulations, between the proposed RL algorithm and traditional PID with disturbances
or without disturbances, are performed and discussed.

The paper is organized as follows. A mathematical model of maneuvering motion
for ship is introduced briefly in Section 2. In Section 3, the framework of actor-critic
network adopted in RL algorithm is presented in detail. In Section 4, simulation results
are presented to confirm the effectiveness of the proposed method. Finally, Section 5
concludes the paper.

2. Ship Mathematical Model. The motion of ship is very complex, which is with six
degrees of freedom. We need to do something to simplify its model in response to the
majority of ship motion and control issues. For the issue of ship course control, we could
ignore the heaving, pitching and rolling, so the ship mathematical model is simplified to
three degrees of freedom just considering the surging, swaying and yawing in the horizontal
motion. Definition of motions in the horizontal plane diagram is shown in Figure 1. The
course angle ψ can be changed only by controlling the rudder angle δ. The mathematical
model related to the rudder angle and the heading rate of ship can be described in the
following form [9]

ṙ +
1

T
r =

K

T
δ (1)

wherein r is the yaw rate, K is gain, and T is time constant.

Figure 1. Ship’s motion in the horizontal plane

In this paper, the characteristic of rudder is also considered, which can be expressed as
[9]

TE δ̇ = δE − δ (2)

wherein δE is command rudder angle, TE is steer gear time constant; wherein TE is 2.5s,∣∣∣δ̇∣∣∣ ≤ 3◦/s, |δE| ≤ 35◦ is the rudder angle limit and rudder rate limit.

When the ship is navigating on the sea, it will be influenced by the disturbances. We
could suppose the disturbances including wave, current and wind which could be treated
as an equivalent rudder angle. The disturbances can be described as follows [10]

ω(t) = 2 + 0.5 sin(0.0523t) + rand(−0.5, 0.5) (3)

wherein rand(−0.5, 0.5) is a random function, generating random number between −0.5
and 0.5.
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Finally, the ship mathematical model is composed of Equation (1), Equation (2) and
Equation (3), which will be used in the simulation studies later.

3. Control System Structure.

3.1. Actor-critic control system. Actor-critic methods are Temporal Differences (TD)
methods [11] that have separated memory structure to explicitly represent the policy
independent of the value function. The structure of actor-critic is shown in Figure 2 [8].
The policy structure used to select actions is known as the actor. The estimated value
function is known as the critic, which criticizes the actions made by the actor. Learning
is always on-policy: the critic must learn about and criticize whatever policy is currently
being followed by the actor. The critique takes the form of TD error. This scalar signal
is the sole output of the critic and it is also used to drive all learning in both actor and
critic. Then, BP neural network, which has good ability of approximation, is applied to
implementing actor and critic.

Figure 2. The structure of actor-critic

3.2. Critic network. The critic network criticizes the actions according to external re-
ward and system’s states signal. The critic network seeks to maximize the expected
discounted payoff, and its output is defined as some specific functions of the discounted
reward sequence [8]:

V (t) = re(t+ 1) + γre(t+ 2) + γ2re(t+ 3) + · · · =
∞∑
k=0

γkre(t+ k + 1) (4)

wherein re is the reward, relying on the system’s states and selected action and re would
be −1 for each failure and at all other times; γ is the discount rate, 0 ≤ γ ≤ 1, and the
discount rate determines the present value of future rewards: a reward received k time
steps in the future is worth only γk−1 times what it would be worth if it were received
immediately.

Hence from (4):

V (t− 1) = re(t) + γre(t+ 1) + γ2re(t+ 2) + · · · =
∞∑
k=0

γkre(t+ k) (5)

Therefore, from (4) and (5), the TD error for state-value prediction is [8]

δ(t) = re(t) + γV (t) − V (t− 1) (6)

When the TD error tends to zero, critic network will approximate Equation (4), and
also remember the function prediction value V (t− 1). Then, V (t+1) could be calculated
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Figure 3. Architecture of critic network

without additional prediction model. After accomplishing learning, the prediction value
of failure signal should be between −1 and 0 [12].

In critic network, BP neural network with three layers is used for training value function.
The structure is shown in Figure 3. Let the number of input layer nodes be IN , and the
output layer has only one node, the number of hidden layer nodes is HN , with the
following activation function:

f(x) =
(
1 − e−x

)
/
(
1 + e−x

)
(7)

Then, at time step t, the input of hidden layer nodes is defined by

ucj(t) =
IN∑
i=1

wcij(t) ∗Xci(t) (8)

wherein j denotes the jth hidden node. wcij denotes the weights between the jth hidden
node and input nodes. Xci denotes the ith input node.

Hence, the output of hidden layer nodes can be expressed as

hcj(t) =
(
1 − e−ucj(t)

)
/
(
1 + e−ucj(t)

)
(9)

Finally, we can obtain the output of output node

V (t) =
HN∑
j=1

wcj(t) ∗ hcj(t) (10)

wherein wcj denotes the weights between the jth hidden node and the output node.
The energy function of neural network is defined as Equation (11) [13]. The weight of

neural network is regulated by gradient descent method.

Ec =
1

2
[δ(t)]2 =

1

2
[re(t) + γV (t) − V (t− 1)]2 (11)

3.3. Actor network. The goal of actor network is to maximize the future reward. Both
critic network and actor network learn online in order to find an optimal policy. The
structure of actor network is similar to critic network, shown in Figure 3. We also let the
number of input layer nodes be IN and the output layer has only one node, the number
of hidden layer nodes is HN , with the activation function Equation (7). At time step t,
the input of hidden layer nodes is defined by

uaj(t) =
IN∑
i=1

waij(t) ∗Xai(t) (12)
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wherein j denotes the jth hidden node. waij denotes the weights between the jth hidden
node and input nodes. Xai denotes the ith input node.

Hence, the output of hidden layer node can be expressed as

haj(t) =
(
1 − e−uaj(t)

)
/
(
1 + e−uaj(t)

)
(13)

Finally, we can obtain the output of output node

A(t) =
HN∑
j=1

waj(t) ∗ haj(t) (14)

wherein waj denotes the weights between the jth hidden node and output node.
The energy function of neural network is defined as Equation (15) [13]. The weight of

neural network is regulated by gradient descent method.

Ea =
1

2
[V (t)]2 (15)

4. Simulation Studies. In this section, the simulation studies are presented to demon-
strate the effectiveness of the proposed actor-critic RL algorithm for ship course control.
In RL, the purpose of the agent is formalized in terms of a special reward signal passing
from the environment to the agent. Meanwhile, the use of a reward signal formalizing
the idea of a goal is one of its most distinctive features [8]. The purpose of ship course
control is to apply rudder to ship tracking the order course ψd. The reinforcement signal
re(t) is defined as

re(t) =

{
0, |eψ(t)| ≤ ε or |eψ(t)| ≤ |eψ(t− 1)|
−1, otherwise

(16)

wherein ε is the tolerance error band, eψ is the error between real course ψ and order
course ψd, eψ = ψ−ψd. The definition of reinforcement signal can both reflect the quality
of the current action and compare the current action with neighboring action.

In these simulations, the considered vessel is a training ship called “Yulong”, which
belongs to Dalian Maritime University. The detailed parameters can be obtained from
[9], and by calculation we obtain K = 0.478, T = 216. The structure of actor network
consists of a layer of two input nodes, a layer of six hidden nodes, and a final output node;
the inputs to the network are the error of course angle eψ and the heading rate r, and
the output is the command rudder angle δE. The structure of critic network is similar to
actor network except that the number of input nodes is three, while the inputs are eψ, r
and δE.

Firstly, we train the actor-critic network without external disturbances. We initialize
γ = 0.9, ε = 1.5◦, ψd = 0◦ and ψ is a random value between 0◦ and 90◦. In each episode,
a failure is considered to occur if the trials are more than 1000 steps, keeping ψd are more
than 10000 steps, it is considered a success. Episodes will terminate when either failure or
success; if success, only ψ is reset to random value, otherwise the system returns to initial
state, and then this episode restarts. After training steps, the obtained control network
is used for simulating the two ship course control experiments with either including or
excluding disturbances, which are described in Equation (3). We also design a traditional
PID course autopilot for the “Yulong”, which is used to compare with the proposed RL
algorithm. The PID autopilot is also used for simulating another two experiments as same
as the RL algorithm, and the parameters of PID are kept unchanged. Then, initialize the
system states ψ = 0◦, r = 0◦/s, δ = 0◦ and set a square wave with 500s period and 30◦

amplitude as the order course signal. The four compared experimental results are shown
in Figure 4 and Figure 5. Figure 4 shows that the PID autopilot can accurately track order
course signal without disturbances, but it has an apparent deviation with disturbances.
However, from Figure 4, we can see that the RL autopilot, which is almost not influenced
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Figure 4. Real course and order course in RL autopilot and PID autopilot

Figure 5. Real rudder angle of RL autopilot and PID autopilot

by disturbances, can accurately track and keep order course signal without overshoot,
and the responses of ship course are smoother and quicker than the PID autopilot. From
Figure 5, we can see that the responses of rudder are satisfied without excess actions
in the RL autopilot which are of great benefit to reduce energy consumption. Figure 5
also shows that the RL autopilot overcomes the disturbances by changing small rudder
angle periodically, but the PID autopilot does not make effective steering to overcome the
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disturbances. The simulation results apparently indicate that the RL autopilot obtained
a satisfied control performance.

5. Conclusion. In summary, the proposed RL method can be used for complex systems,
such as ship course control system which is extremely difficult to establish the accurate
model and has strong disturbances. By trial-and-error learning, the method can gradu-
ally adapt to the environment and the weights of BP network are updated; thus, we can
obtain the optimal control policy. In the simulations of ship course control, we trained
the actor-critic network firstly and then the obtained actor-critic network is used for sim-
ulating the two compared experiments with or without disturbances. A traditional PID
course autopilot is also designed to compare with the proposed RL method. Finally, the
simulation results demonstrate that the RL autopilot, which is almost not influenced by
disturbances, can accurately and rapidly track order course signal without overshoot and
excess actions. Obviously, its performance is better than the traditional PID autopilot.
Furthermore, the proposed RL method shows good tracking performance and strong ro-
bustness. A limitation of the method is required to train neural network offline. Our
future efforts will be made to extend our method to online learning algorithm.
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