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Abstract. Based on the common Lyapunov function design method, this paper inves-
tigates the global asymptotic output feedback stabilization problem for a class of switched
high-order planar systems under arbitrary switchings. By adopting the adding a power
integrator technique and designing an implementable observer, an output feedback con-
troller is constructed to ensure that the closed-loop system is globally asymptotically sta-
ble and the output can be regulated to the origin. The numerical example is provided to
demonstrate the effectiveness of the proposed design scheme.
Keywords: Switched high-order planar systems, Adding a power integrator technique,
Global asymptotic stabilization, Common Lyapunov function

1. Introduction. Switched systems including some continuous dynamic subsystems and
a switching rule are a special class of nonlinear hybrid systems. By using different design
methods and taking different Lyapunov functions, the stabilization problems of switched
nonlinear systems have been received much attention over the past few decades, see, e.g.,
[1-3] and the references therein. The motivation for the research on switched systems
mainly comes from two reasons. One is that a lot of practical engineering systems are
inherently multi-model and can be modeled by switched systems, such as networked sys-
tems [4] and air traffic control [5]. Another is that the switching control strategy has been
extensively employed in many advanced controls, such as [6-8].

In recent years, with the aid of adding a power integrator technique, [9] systematicly
studied the control problems of high-order nonlinear systems. However, for an exten-
sive form of high-order systems, switched high-order nonlinear systems have gained little
consideration. In the existing literature, [10] investigated the H∞ control problem of
switched nonlinear systems in p-normal form by multiple Lyapunov functions method
and the adding a power integrator technique. [11] dealt with the state-constrained prob-
lem for a class of switched high-order nonlinear systems. It should be pointed out that
the aforementioned results only considered the state feedback control, and there are no
relevant results on the output feedback stabilization of switched high-order systems until
now. And in most instances, the system states are unmeasurable, the state feedback
control may not satisfy the system control requirements. Therefore, it is meaningful and
necessary to study the output feedback control of switched high-order nonlinear systems.
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The purpose of this paper is to solve the global asymptotic output feedback stabilization
problem for a class of switched high-order nonlinear systems under arbitrary switchings.
On the basis of common Lyapunov function design method, by introducing the adding a
power integrator technique and designing an implementable observer, an output feedback
controller is constructed to guarantee that the closed-loop system is globally asymptoti-
cally stable.

The remainder of this paper is organized as follows. Section 2 provides the problem
formulation and some useful lemmas. Section 3 gives the output feedback controller design
procedure. The stability analysis is given in Section 4, following a simulation example in
Section 5. Section 6 concludes this paper.

2. Problem Formulation and Some Useful Lemmas. This paper considers the fol-
lowing switched high-order planar system described by

ẋ1 = h
σ(t)
1 xp

2 + f
σ(t)
1 (x1),

ẋ2 = h
σ(t)
2 up + f

σ(t)
2 (x1, x2),

y = x1, (1)

where x = (x1, x2)
T ∈ R2, u ∈ R and y ∈ R are the system state, control input and

output, respectively, and x2 is unmeasurable. p ∈ R∗ =: {q ∈ R+: q ≥ 1 is a ratio of odd
integers}. σ(t) : [0,+∞) → I = {1, · · · ,m} is the switching signal. For ∀i = 1, 2 and
∀k ∈ I, the mapping fk

i : Ri → R is continuous differentiable (i.e., C1) with fk
i (0) = 0,

and hk
i is a positive constant.

Remark 2.1. The switching signal σ(t) has finite number of switching during any finite
time interval in this paper. This is a common assumption in the switched nonlinear
literature, i.e., the Zeno and impulsive phenomena are excluded consideration here.

Remark 2.2. It should be pointed out that when the switching law is arbitrary, one pow-
erful way to deal with the stabilization problems of switched systems is to find a common
Lyapunov function for all subsystems. This paper aims to use the common Lyapunov
function design method to address the global output feedback control for the switched high-
order planar system (1) under arbitrary switchings. To achieve this objective, we need the
following assumption and lemmas.

Assumption 2.1. For ∀i = 1, 2 and ∀k ∈ I, there exist C1 nonnegative functions φk
1(x1)

and ψk
1(x1) such that

|fk
1 (x1)| ≤ |x1|pφk

1(x1), |fk
2 (x1, x2)| ≤ (|x1|p + |x2|p)ψk

1(x1).

The adding a power integrator technique is based on the following three lemmas, which
plays an important role in proving the main result of this paper.

Lemma 2.1. [12] Suppose p ∈ R∗ and x, y be real-valued functions. For a constant c > 0,
then |xp − yp| ≤ c|x− y||(x− y)p−1 + yp−1|.

Lemma 2.2. [12] Let m, n be positive constants. For any positive number γ, one has
xmyn ≤ m

m+n
γ|x|m+n + n

m+n
γ−

m
n |y|m+n.

Lemma 2.3. [12] For any x, y ∈ R and p ∈ R∗, then −(x−y)(xp−yp) ≤ − 1
2p−1 (x−y)p+1.

3. Output Feedback Controller Design. In what follows, we give the output feedback
controller design procedure by using the adding a power integrator technique.
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3.1. State feedback control. Firstly, choosing η1 = x1 and V1(x1) = λ1

2
η2

1 (λ1 > 0), for
∀k ∈ I, by Assumption 2.1, it can be deduced that

V̇1(x1) ≤ λ1h
k
1η1x

p
2 + λ1η

1+p
1 φk

1(x1)

≤ λ1h
k
1η1(x

p
2 − x∗p2 ) + λ1h

k
1η1x

∗p
2 + λ1η

1+p
1 φ1(x1), (2)

where φ1(x1) ≥ max∀k∈I{φk
1(x1)} is a C1 nonnegative function. The first virtual controller

x∗2 = −
(
c11 + λ1φ1(x1)

λ1hmin
1

) 1
p

η1 =: −γ1(x1)η1, c11 > 0, hmin
1 = min

∀k∈I
{hk

1} (3)

leads to

V̇1(x1) ≤ −c11η
1+p
1 + λ1h

k
1η1(x

p
2 − x∗p2 ). (4)

Next, define η2 = x2 − x∗2 and V2(x1, x2) = V1(x1) + λ2

2
η2

2 (λ2 > 0). For ∀k ∈ I, from
(4), it follows that

V̇2(x1, x2) ≤ −c11η
1+p
1 + λ2h

k
2η2u

p + λ1h
k
1η1(x

p
2 − x∗p2 )

+λ2η2

(
fk

2 (x1, x2) −
∂x∗2
∂x1

(
hk

1x
p
2 + fk

1 (x1)
))

. (5)

By Lemmas 2.1-2.2, one deduces that

λ1h
k
1η1(x

p
2 − x∗p2 ) ≤ λ1h

max
1 c|η1||η2|

(
xp−1

2 + x∗p−1
2

)
≤ 2p−1cλ1h

max
1

(
|η1||η2|p + γp−1

1 (x1)|η1|p|η2|
)

≤ l21η
1+p
1 + α21(x1)η

1+p
2 , (6)

where hmax
1 = max∀k∈I{hk

1}, l21 is a positive constant, and α21(x1) is a C1 nonnegative
function.

According to Assumption 2.1 and Lemma 2.2, for ∀k ∈ I, there exist positive constant

l22, C1 nonnegative functions ψ1(x1) ≥ max∀k∈I{ψk
1(x1)}, φ̄1(x1) ≥ |∂x∗

2

∂x1
|(hmax

1 +φ1(x1)) +

ψ1(x1) and α22(x1) such that

λ2η2

(
fk

2 (x1, x2) −
∂x∗2
∂x1

(hk
1x

p
2 + fk

1 (x1))

)
≤ λ2|η2|(|x1|p + |x2|p)φ̄1(x1)

≤ λ2|η2|((1 + 2p−1γp
1(x1))|η1|p + 2p−1|η2|p)φ̄1(x1)

≤ l22η
1+p
1 + α22(x1)η

1+p
2 . (7)

Taking

c21 = c11 − l21 − l22 > 0, c22 > 0, hmin
2 = min

∀k∈I
{hk

2},

x∗3 = −
(
c22 + α21(x1) + α22(x1)

λ2hmin
2

) 1
p

η2 =: −γ2(x1)η2, (8)

and substituting (6)-(8) into (5), we have

V̇2(x1, x2) ≤ −c21η
1+p
1 − c22η

1+p
2 + λ2h

k
2η2(u

p − x∗p3 ). (9)

3.2. Observer design. Since x2 in system (1) is unmeasurable, we introduce the follow-
ing observer

˙̂z = h
σ(t)
2 up − ∂Γ(x1)

∂x1

(
h

σ(t)
1 x̂p

2 + f
σ(t)
1 (x1)

)
, x̂2 = ẑ + Γ(x1), (10)

where x̂2 is the estimation of x2, Γ(x1) is a nonlinear gain function with Γ(0) = 0 and
∂Γ(x1)

∂x1
> 0 to be determined. By (8) and (10), one can obtain the implementable controller

u = −γ2(x1)(x̂2 + γ1(x1)x1) = −γ2(x1)(ẑ + Γ(x1) + γ1(x1)x1). (11)
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Defining e2 = x2 − x̂2 = x2 − ẑ − Γ(x1), using (1) and (10), one has

ė2 = f
σ(t)
2 (x1, x2) −

∂Γ(x1)

∂x1

h
σ(t)
1 (xp

2 − x̂p
2). (12)

Considering W2(e2) = λ
2
e2
2 (λ > 0), for ∀k ∈ I, from (12), it follows that

Ẇ2(e2) = λe2

(
−∂Γ(x1)

∂x1

hk
1(x

p
2 − x̂p

2) + fk
2 (x1, x2)

)
. (13)

By Lemma 2.3 and ∂Γ(x1)
∂x1

> 0, one can obtain

−λhk
1

∂Γ(x1)

∂x1

e2 (xp
2 − x̂p

2) = − (x2 − x̂2) (xp
2 − x̂p

2)
∂Γ(x1)

∂x1

λhk
1

≤ −∂Γ(x1)

∂x1

λhmin
1

2p−1
e1+p
2 . (14)

Applying Assumption 2.1 and Lemma 2.2, for ∀k ∈ I, there are positive constants l31
and l32, a C1 nonnegative function β11(x1) such that

λe2f
k
2 (x1, x2) ≤ λ|e2| (|x1|p + |x2|p)ψk

1(x1)

≤ λ|e2|
(
(1 + 2p−1γp

1(x1))|η1|p + 2p−1|η2|p
)
ψ1(x1)

≤ l31η
1+p
1 + l32η

1+p
2 + β11(x1)e

1+p
2 . (15)

Substituting (14)-(15) into (13) yields

Ẇ2(e2) ≤ l31η
1+p
1 + l32η

1+p
2 −

(
∂Γ(x1)

∂x1

λhmin
1

2p−1
− β11(x1)

)
e1+p
2 . (16)

4. Stability Analysis. We state the main result of this paper as follows.

Theorem 4.1. If Assumption 2.1 holds for the switched high-order planar system (1),
under the output feedback controllers (10) and (11), then the closed-loop system is globally
asymptotically stable and the output can be regulated to the origin.

Proof: Introducing the entire Lyapunov function V (x1, x2, e2) = V2(x1, x2) + W2(e2),
from (9) and (16), one leads to

V̇ (x1, x2, e2) ≤ −(c21 − l31)η
1+p
1 − (c22 − l32)η

1+p
2

−
(
∂Γ(x1)

∂x1

λhmin
1

2p−1
− β11(x1)

)
e1+p
2 + λ2h

k
2η2 (up − x∗p3 ) . (17)

To estimate the last term on the right-hand side of (17), by (8), (11) and Lemmas
2.1-2.2, one gets

λ2h
k
2η2 (up − x∗p3 ) ≤ cλ2h

max
2 γp

2(x1)|η2||e2|((x2 − x∗2)
p−1 + (x2 − x∗2 − e2)

p−1)

≤ 2p−1cλ2h
max
2 γp

2(x1) (|η2|p|e2| + |η2||e2|p)
≤ l33η

1+p
2 + β12(x1)e

1+p
2 , (18)

where hmax
2 = max∀k∈I{hk

2}, l33 > 0 is a constant, and β12(x1) is a C1 nonnegative function.
Combining (17) with (18), we have

V̇ (x1, x2, e2) ≤ −(c21 − l31)η
1+p
1 − (c22 − l32 − l33)η

1+p
2

−
(
∂Γ(x1)

∂x1

λhmin
1

2p−1
− β11(x1) − β12(x1)

)
e1+p
2 . (19)

By selecting

c31 = c21 − l31 > 0, c32 = c22 − l32 − l33 > 0, c33 > 0,
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Γ(x1) =
2p−1

λhmin
1

(
c33x1 +

∫ x1

0

(β11(s) + β12(s)) ds

)
, (20)

(19) changes into

V̇ (x1, x2, e2) ≤ −c31η
1+p
1 − c32η

1+p
2 − c33e

1+p
2 . (21)

By (21), one can conclude that the closed-loop system consisting of (1), (10) and (11)
is globally asymptotically stable and the output can be regulated to the origin.

5. A Simulation Example. Consider the following switched nonlinear system

ẋ1 = h
σ(t)
1 x

5
3
2 + f

σ(t)
1 (x1),

ẋ2 = h
σ(t)
2 u

5
3 + f

σ(t)
2 (x1, x2),

y = x1, (22)

where σ(t) : [0,+∞) → {1, 2}, h1
1 = 6

5
, h2

1 = 1, h1
2 = 1

2
, h2

2 = 2
5
, f1

1 = 1
5
x

5
3
1 , f2

1 = 1
6
x1 sin x1,

f 1
2 = 1

4
x

5
3
1 sinx2, f

2
2 = 1

5
x

5
3
1 sinx1x2. Following the design procedure in Section 3 and

selecting c11 = 2, c22 = 1, c33 = 0.05, λ = 5, λ1 = 0.1, λ2 = 0.001, l21 = 1.65, l22 = 0.206,
l31 = 0.14 and l33 = 0.95, one can get the output feedback controller

u = −129.9019 (ẑ + Γ(x1) + 6.0703x1) , Γ(x1) = 12.6073x1,

˙̂z = h
σ(t)
2 u

5
3 − ∂Γ(x1)

∂x1

(
h

σ(t)
1 (ẑ + Γ(x1))

5
3 + f

σ(t)
1 (x1)

)
. (23)

In the simulation, we choose the initial values x1(0) = −0.1, x2(0) = −1, ẑ(0) = 2. Figure
1 demonstrates the effectiveness of the output feedback controller.

Figure 1. The responses of the closed-loop systems (22) and (23)



1534 L. LIU, Y. ZHANG AND X. XING

6. Conclusion. This paper deals with the global asymptotic output feedback stabiliza-
tion problem for a class of switched high-order planar system (1) by introducing the
adding a power integrator technique. Based on the common Lyapunov function design
method and designing an implementable observer, the output feedback controller is ex-
plicitly constructed to ensure that the closed-loop system is globally asymptotically stable
and the output can be regulated to the origin.

There also exist some problems to be investigated: one is to consider the output feed-
back control for system (1) with feedforward form as in [13]. Another is to solve the
data-driven problem of system (1) discussed in [14].
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