
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 7, July 2016 pp. 1535–1540

A LOOP-BASED PARTITION SCHEME FOR CONVOLUTION
FILTERING ON FIELD PROGRAMMABLE GATE ARRAYS

Zhijian Lu

Postdoctoral Scientific Research Workstation
Shanghai Futures Exchange

No. 500, Pudian Road, Shanghai 200122, P. R. China
lu.zhijian@shfe.com.cn

Received November 2015; accepted February 2016

Abstract. Convolutional networks are computational models that are widely used in
pattern recognition applications. Operations in these applications require convolution
filtering at each pixel. Depending on the size of input image and convolution kernel,
the two-dimensional convolution can require significant amounts of computation, thus
suggesting a highly parallel implementation in hardware. This paper describes a loop-
based computation and storage partition scheme for convolution filtering on Field Pro-
grammable Gate Arrays (FPGAs), which can guide the proper parameterization of a
convolution filter bank on a given architecture. The case study on selected kernels shows
the method can express the computation and storage tradeoffs involved in mapping a Con-
volutional Neural Networks (CNNs) on FPGAs.
Keywords: Convolutional neural networks (CNNs), Loop-based partition, Field pro-
grammable gate arrays (FPGAs)

1. Introduction. Multi-layer Convolutional Neural Networks (CNNs) are feed-forward
multi-layer architectures composed of multiple layers of neurons [1,2]. Every connection
between an input neuron and an output neuron is assigned a value called connection
weight. Each output neuron computes a weighted multiply-add sum of all its inputs,
followed by a non-linerarity and a feature pooling stage. The input and output of each
layer are sets of arrays called feature maps. At the output, each feature map represents
a particular feature extracted from the inputs. In CNNs, each layer is composed of three
stages: a filter bank stage, a non-linearity and a feature pooling stage [3]. The complete
CNN architecture is composed of less than three such three-stage layers, followed by a
fully-connected classifier. Consider an example in real time video processing, the average
pixel rate required is 9.2 Mpixels/sec at least for a VGA (640 × 480 pixels) resolution.
In the case of a high definition application with 1280× 720 resolution, the required pixel
rate is approximitely 20 Mpixels/sec. When it comes to full HD (1920 × 1080 pixels)
resolution, the pixels rate is more than 62 Mpixels/sec. For typical tasks, the number of
operations for each pixel is 10 to 100 or more, which requires vast computation power.
Obviously only using highly parallel computing structures can meet these requirements.

Due to the loop-based computation pattern, general purpose processors can not meet
the performance requirement. Various schemes based on FPGA or GPU have been pro-
posed recently to improve performance of CNN designs [4-6]. Some efforts have imple-
mented convolution operations in hardware [7,8], and others like large-category image
classification and automatic speech recognition require substantial computing resources
to train and evaluate [6,9]. The fast convolution implementation itself is not sufficient to
accelerate the entire convolution network. Some optimizations are required to hold weight
values and intermediate data for the acceleration. For a given number of processing el-
ements and external memory bandwidth, explorations of architectural configuration are

1535



1536 Z. LU

needed to find the architecture parameters for the convolution networks, that can match
the multiple parallelism and give the best throughput performance.

This paper presents a loop-based computation and storage partition scheme for convo-
lution filtering on field programmable gate arrays. For a given number of computation
units and memory bandwidth, the scheme can find the proper architecture parameters
by exploring the architecture configurations, which can exploit the massive parallelism in
hardware and give the best throughput. The rest of the paper is organized as follows.
Section 2 presents a loop-based convolution filtering model and partition scheme, which
can express the storage and computation trade-offs involved in mapping CNNs on FPGAs.
Section 3 shows the cost functions with different hardware constraints and two practical
scenarios for a case study. And Section 4 concludes the paper.

2. Computation Partition of Convolution Filtering Array. This paper will fo-
cus on the filter array sub-stage of the feed-forward propagations. However, the back-
propagation phase of convolution networks that trains the convolution kernel values is
not considered. Feed-forward propagations are composed of multiple layers. The input
and output of each layer are sets of feature maps. Each layer is composed of three sub-
stages: a convolution filter array, a non-linearity, and a feature pooling sub-stage. A
typical CNN is composed of less than three such layers, followed by a classifier. In this
section, different mapping strategies are used to show that the scheme could correctly
capture the various architecture scenarios, which has different execution times for a given
FPGA architecture.

2.1. Loop-based convolution filtering model. The descriptions below focus on com-
puting layer l + 1 based on layer l of feed-forward propagation, and the outputs are the
feature maps of layer l+1. The input is a three-dimensional array with Fl two-dimensional
feature maps of size Xl × Yl. Each element is denoted nijk and each feature map is de-
noted fl. The output is also a three-dimensional array with Fl+1 feature maps of size
Xl+1 × Yl+1. A trainable convolution kernel kij in the sublayer has size K × K and con-
nects input feature map fl to output feature map fl+1. A filter array sub-stage accepts I
feature maps fi from layer l as inputs and produces J intermediate outputs Ij. To produce
the intermediate output Ij, the input feature maps are first individually convolved with
convolution kernels kij and the convolved results are accumulated. Then a trainable bias
value is added to the accumulated result. However, the dimension of intermediate output
array can vary from one convolution network to another. The loop-based representation
of convolution filtering model is shown in Algorithm 1. From the computational point of
view, Ni × Nj convolution kernel computations are the most computationally intensive
parts of the convolution networks, especially when the kernel size and input image are
large. Xl is the feature map width in layer l. ∆X is the moving step length in row direc-
tion. Yl is the feature maps length in layer l. ∆Y is the moving step in column direction.
pl is the output value in layer l.

2.2. Splitting computations. The abundant parallelism is inherent to CNN computa-
tion models. For the hardware constraints, it is not possible to have all feature maps and
the intermediate values fit in the on-chip storage, nor to have all kernels fit on the com-
putational units. Trade-offs are required to split the computations. In order to formally
express and show that, each loop is splited into two loops. The original loop l is split
into blocks of size ll, resulting in two loops. Potentially, all computations can be splitted
along those principles, as shown in Algorithm 2. Therefore, the main contribution of this
representation is that it becomes fairly simple to express certain computations, in order
to adapt to on-chip storage, or to the number of available operators.



ICIC EXPRESS LETTERS, VOL.10, NO.7, 2016 1537

Algorithm 1: Loop-based representation of convolution

for fl+1 = 1 to fl+1 = Nj do
for fl = 1 to fl = Ni do

for xl = 1 to xl = Xl by ∆X do
xl+1 = xl

∆X

for yl = 0 to yl = Yl − 1 by ∆Y do
yl+1 = yl

∆Y
initialize v
for i = 1 to i = Ni do

for j = 1 to j = Nj do

v+ = pl
f(i+xl),(j+yl)

× wl,l+1
ij

pl+1
fxl+1,yl+1

= v

Algorithm 2: Splitting the computations in loop-based representation

for ffl+1 = 1 to ffl+1 = Fl by FFl+1 do
for fl = ffl to fl = ffl + FFl do

for ffl = 1 to ffl = Fl by FFl do
for fl+1 = ffl+1 to fl+1 = ffl+1 + FFl do

for xxfl
= 1 to xxfl

= Xfl
by XXfl

do
for xfl

= xxfl
to xfl

= xxfl
+ XXfl

do
xfl+1

=
xfl

∆X
fl+1
fl

for yyfl
= 1 to yyfl

= Yfl
by Y Yfl

do
for yfl

= yyfl
to yfl

= yyfl
+ Y Yfl

do
yfl+1

=
yfl

∆Y
fl+1

fl

initialize v
for i = 1 to i = Ni do

for j = 1 to j = Nj do

v+ = pfl
(i + xfl

, j + yfl
) × w

fl,fl+1

ij

pfl+1
(xfl+1

, yfl+1
) = v

2.3. Mapping scheme of loop partition. It is possible that there are not enough
operators for implementing all the kernels required for all output feature maps. In that
case, it is possible to apply this reuse the input feature map data for only a fraction of the
output feature maps, thus requiring to implement fewer kernels. This can be expressed
again by moving loop ffl above the loops which have been previously moved. This also
has the effect of reducing the storage requirements for the kernels weights. However, since
all the output feature maps can no longer be computed in one time, the data of the input
feature maps have to be reloaded several times, as many times as the number of blocks
of output feature maps, i.e., Fl

FFl
.

2.4. Dependence analysis. While several loops have been interchanged, thereby ex-
pressing the reuse of data, or the reduction of computational requirements, not all trans-
formations are possible because of dependences. Consider for instance loop fl and loops



1538 Z. LU

xxfl
, yyfl

. Because the latter indices depend on fl, they cannot be moved above this loop.
This corresponds to the case where each input feature map has a different dimension,
hence the index is fl. Since moving xxfl

, yyfl
above fl means that the same portion of all

feature maps is meant to be reused, the notion is potentially valid since all feature maps
do not have the same number of blocks.

3. Mapping Computations to Convolution Kernel Primitives. The goal of using
different mapping strategies is to show that the model could correctly capture the various
scenarios, which has different execution times for a given FPGA architecture.

3.1. Convolution computation with loop unrollling. The implementation of 2D
convolution is not trivial because it is not only compute-extensive but also memory-
intensive. With N×N convolution kernel, it requires N×N multiplications and N×N−1
additions, as well as N ×N accesses to the input image data for the calculation of a single
output pixel.

The convolution computation includes a post accumulation to allow the combination
of multiple convolutions. It shows an example pipeline implementing a N ×N convolver.
Each pixel is loaded line by line and is multiplied by all N2 connection weights. Partial
sums are then accumulated by the adder, with a delay of one pixel between adjacent
adds and a delay of the input image row length minus N pixels between rows for proper
alignment. This also has the effect of reducing memory bandwidth requirements. When
a pixe value was loaded into the on-chip buffers, it could be reused for calculation of
successive windows to avoid fetching it repetitively from external memories. As a result,
the requirement for external memory bandwidth was reduced to acceptable level. The
time for completing one input feature map is simply the time required to fetch the image
from memory one pixel at a time.

Iterations of a loop are continuously initiated at constant intervals, without having to
wait for preceding interations to complete, which is shown in Algorithm 3. The advantage
of loop unrolling is that optimal performance can be achieved with minimum memory
bandwidth. The loop unrolling scheme in this paper is a practical, efficient technique
for scheduling the parallelism within a convolution operation. The convolution primitives
exploit the parallelism inherent in a convolution using a streaming architecture.

Although there are various ways to implement 2D convolution, note that this pipeline
is optimal in the case that each input pixel is accessed only once. Output values are
produced at the same rate, so maximum parallelism is archieved for the given memory
bandwidth. Values from the input plane are put into N on-chip FIFOs of which the size
is the width of the image minus the width of the kernel. Shifting values in these FIFOs
correspond to shifting the convolution window over input plane. At each clock cycle,
values are shifted by one, and the inner product between the input plane window and the
kernel is computed in parallel.

3.2. Constraints analysis. The constraints on FFl and FFl+1 brought by the FPGAs
are the following. The product of FFl and FFl+1 must be less than or equal to the
total hardware available which means FFl × FFl+1 ≤ Tk, in which FFl and FFl+1 are
the number of input feature maps and output feature maps respectively, Tk is the total
number of kernels that can simultaneously fit on the FPGA.

Other constraints are brought by the memory bandwidth. If FFl is used in reading
inputs in layer l, where Nb is the number of bits used for each point within a layer, Tb is
the total number of bits per cycle for each memory port transferring, then FFl×Nb ≤ Tb.
If FFl is used in reading intermediate data, where Ib is the intermediate data bit wide,
then FFl × Ib ≤ Tb. If FFl+1 is used in writing intermediate data, then FFl+1 × Ib ≤ Tb.
If FFl+1 is used in writing final outputs, then FFl+1 × Nb ≤ Tb.



ICIC EXPRESS LETTERS, VOL.10, NO.7, 2016 1539

Algorithm 3: Convolution computation with loop unrolling

for fl+1 = 1 to fl+1 = Fl+1 do
for fl = 1 to fl = Fl do

for xfl
= ∆X

fl+1

fl
to xfl

= ∆X
fl+1

fl
+ Xfl

by ∆X
fl+1

fl
do

xfl+1
=

xfl

∆X
fl+1
fl

for yfl
= ∆Y

fl+1

fl
to yfl

= ∆Y
fl+1

fl
+ Yfl

by ∆Y
fl+1

fl
do

yfl+1
=

yfl

∆Y
fl+1

fl

for i = 1 to i = Ni do
for j = 1 to j = Nj do

regi,j+1 <= regi,j + pfl
(xfl

, yfl
) × w

fl,fl+1

ij

if (i ̸= N − 1)
for d = N to d = (X − 1) − 1 do

regi,d+1 <= regi,d

regi+1,0 <= regi,X−1

regoutput <= regi,N

pfl+1
(xfl+1

, yfl+1
) = regoutput

When computing the convolution filter layer without reading the temporary interme-
diate, the number of memory bits read per cycle is FFl−1 × Nb. If there exist temporary
results, then FFl × Nb + FFl+1 × Ib bits are read per cycle. The amount of memory bits
written per cycle is FFl+1 × Ib or FFl+1 ×Nb depending on whether intermediate or final
outputs are kept. Tb bits per cycle is the upper limit of read requests or write requests,
which cannot be exceed.

3.3. Case study.

3.3.1. Independent output within single pass. FFl convolvers simultaneously process FFl

different input feature maps, and FFl convolutions are combined to yield a single output.
With processing FFl different input feature maps, every outputs are computed in a serial
pattern. However, each output is being computed in parallel, that is FFl feature maps
are being precessed in parallel. Note that there is no intermediate data to write out since
no partial outputs are computed. The execution time is roughly the same as it takes to
read one input feature map about Fl+1 times, which can be expressed by moving the x
and y loops above the fl loops, which can be expressed in Algorithm 4.

The number of passes required for completion is Fl+1, so the execution time of the
entire layer is Xfl

×Yfl
×Fl+1, which is the cost function subjected to memory bandwidth

constraints and the number of hardware convolves available.

3.3.2. Combined output with multiple passes. In the case that more than FFl input feature
maps are combined to realize one output, then the aggregated output from the convolution
operators may only be a partial output that must be stored in memory. The execution
time is roughly the same as the time it takes to read one of the input feature maps, about
Fl+1×⌈ Fl

FFl
⌉ times. This can be expressed by splitting the fl loop and then moving the ffl

loop to the top of all loops. Hence it is possible to apply this reuse of the 2D convolvers
for a fraction of the input feature maps and one output feature maps.

The number of passes required for completion is Fl+1 × ⌈ Fl

FFl
⌉. The execution time for

completing the entire layer is Xfl
× Yfl

× Fl+1 × ⌈ Fl

FFl
⌉. The computation starting from

the ml−1 loop of both scenarios above can be spacially mapped in hardware.



1540 Z. LU

Algorithm 4: Independent output within single pass

for fl = 1 to fl = Fl do
for ffl+1 = 1 to ffl+1 = Fl by FFl do

for xfl
= 1 to xfl

= Xfl
by ∆X

fl+1

fl
do

xfl+1
=

xfl

∆X
fl+1
fl

for yfl
= 1 to yfl

= Yfl
by ∆Y

fl+1

fl
do

yfl+1
=

yfl

∆Y
fl+1

fl

for fl+1 = ffl+1 to fl+1 = ffl+1 + FFl do
initialize v
for i = 1 to i = Ni do

for j = 1 to j = Nj do

v+ = pfl
(i + xfl

, j + yfl
) × w

fl,fl+1

ij

pfl+1
(xfl+1

, yfl+1
) = v

4. Conclusion. In this paper, a computational model of convolution filtering and a
mapping scheme for FPGA-based computing with hardware constraints are presented.
The contribution of this model is to express all the storage and computational tradeoffs
involved in mapping a CNN on FPGAs. Provided the model correctly captures the
different tradeoffs, it can guide the proper parameterization of a CNN for a given FPGA
architecture. In the future, the loop-based partition scheme will be extended to more
commercial reconfigurable architectures to exploit the potential parallelism and tradeoffs
in different architectures.

REFERENCES

[1] Y. L. Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel et al.,
Handwritten digit recognition with a back-propagation network, Advances in Neural Information
Processing Systems, 1990.

[2] Y. L. Cun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document
recognition, Proc. of the IEEE, vol.86, no.11, pp.2278-2324, 1998.

[3] Y. L. Cun, K. Kavukcuoglu and C. Farabet, Convolutional networks and applications in vision, Proc.
of IEEE International Symposium on Circuits and Systems, pp.253-256, 2010.

[4] S. Chakradhar, M. Sankaradas, V. Jakkula and S. Cadambi, A dynamically configurable coprocessor
for convolutional neural networks, ACM SIGARCH Computer Architecture News, vol.38, pp.247-257,
2010.

[5] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam, Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning, ACM SIGPLAN Notices, vol.49, pp.269-284,
2014.

[6] A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep convolutional neural
networks, Advances in Neural Information Processing Systems, pp.1097-1105, 2012.

[7] R. G. Gironés, R. C. Palero, J. C. Boluda and A. S. Cortés, FPGA implementation of a pipelined
on-line backpropagation, The Journal of VLSI Signal Processing, vol.40, no.2, pp.189-213, 2005.

[8] F. Cardells-Tormo and P. L. Molinet, Area-efficient 2-d shift-variant convolvers for FPGA-based
digital image processing, IEEE Workshop on Signal Processing Systems Design and Implementation,
pp.209-213, 2005.

[9] T. Chilimbi, Y. Suzue, J. Apacible and K. Kalyanaraman, Project Adam: Building an efficient and
scalable deep learning training system, The 11th USENIX Symposium on Operating Systems Design
and Implementation, pp.571-582, 2014.


