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ABSTRACT. Supervised machine learning algorithms are usually used to detect Android
malware. The primary task is to select suitable features to train the classifiers. In this
paper, the requested permissions and Android APIs are used as the classification features
respectively. The permission feature sets are selected according to the difference value
of declared ratio, the information gain and the permission category respectively. The
Android API feature sets are selected based on the difference value of invoked ratio.
These feature sets are evaluated using four commonly used supervised machine learning
algorithms, i.e., Naive Bayes, C4.5, KNN and Random Forest. As a result, a feature
set of 40 permissions and a set of 60 Android APIs are determined to be the minimal
feature set for Android malware detection.
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1. Introduction. Google’s Android operation system employs a permission-based secu-
rity model. Android requires that developers declare a list of permissions in a manifest
file. In order to install an Android application into a mobile device, the user must allow
all permissions requested by the application.

It is natural for researchers to detect Android malware according to the permissions
requested by applications. Sanz et al. presented manifest analysis for malware detection in
Android (MAMA) [1]. They extracted the permission and feature tags from the manifest
file. These features were then used to build machine learning classifiers to detect malicious
applications. [2] illustrated that a permission-based classifier could detect more than 81%
of malicious samples. The permission-based mechanism can be used as a quick filter to
identify malicious applications.

However, there are more than one hundred of build-in Android permissions and a large
number of third-party permissions. Permission-based classifiers tend to be trained with
high-dimensional feature vectors. For example, Huang et al. adopted 297 features for
Android malware detection [2]. However, dealing with so many features can decrease the
run-time efficiency. Moreover, it is also easy to degrade the classification performance if
the redundant features exist. Thus, it is necessary to carry out the feature pruning to
reach balance between the vector length and classification performance.

It should be noted that the requested permissions declared in the manifest file may
not be the actual permissions required by an application. Felt et al. analyzed the source
codes of Android applications to determine whether developers follow the least privilege
principle with their permission requests [3]. They found that approximately one-third of
evaluated applications are over privileged. Google does not provide a complete mapping
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to the permissions that the API call may need, and it is not a trivial work to find the
actually required permissions [4]. Therefore, we think it is better to directly use API as
the classification features, rather than try obtaining the required permissions. However,
there are a large number of APIs used in Android applications; we have to find a relatively
small API feature set for Android malware detection.

In this paper, we investigate on minimal feature selection for Android malware detec-
tion. We extract requested permissions and Android APIs as the classification features.
Several feature selection methods are presented to construct the feature sets. These fea-
ture sets are evaluated using four commonly used supervised machine learning algorithms.
Finally, the minimal permission and Android API feature sets are determined for Android
malware detection, respectively.

The remainder of the paper is organized as follows. In Section 2, the evaluation frame-
work for minimal feature selection is introduced. The feature selection methods for re-
quested permissions and Android APIs are discussed in Section 3 and Section 4, respec-
tively. In Section 5, we compare the classification performance of feature sets constructed
by different feature selection methods. Finally, we conclude the paper in Section 6.

2. Approach Overview. The evaluation framework for minimal feature selection is
depicted in Figure 1.

Permission [— — — 7
Malware -
Minimal Classifier Performance
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FIGURE 1. The evaluation framework for minimal feature selection

A total of 25255 Android samples are collected in our work. There are 22476 benign
samples downloaded from various Android markets. Moreover, there are 2779 malicious
samples collected from Android Malware Genome Project [5] and DroidAnalytics Project
[6].
Apktool [7] is used to unpack the apk file of a sample into its constituent resources
and the AndroidManifest.xml file, and then the Android application’s classes.dex file is
disassembled into a directory tree of smali files. The requested permissions are extracted
from the AndroidManifest.xml file (under the uses-permission tag). The Android APIs
are extracted from those smali files.

With these extracted features, several methods are carried out to select features into
various feature sets. According to these feature sets, the binary feature vectors are built.
If the apk sample contains a selected feature, the corresponding bit in the feature vector
is set to 1, otherwise is set to 0. At last, a class label is appended at the end of a feature
vector to show that the vector belongs to a benign or a malicious application.

The binary feature vector is evaluated using four supervised machine learning algo-
rithms, i.e., Naive Bayes, C4.5, KNN and Random Forest. In order to evaluate the
impact of various feature vectors on classification performance, the following metrics are
measured.

1) True positive ratio (TPR): the ratio of the number of malware samples correctly
classified over the total number of malware samples.

2) True negative ratio (TNR): the ratio of the number of benign samples correctly
classified over the total number of benign samples.
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3) F-score: the harmonic mean of Recall and Precision.

In this paper, the 10-fold cross-validation is used to evaluate the performance of machine
learning classifiers for the selected feature sets. The weka data mining software [8] is used
to perform the evaluation.

3. Minimal Feature Selection for Permission-Based Detection. There are 882
permissions extracted from all the samples, including 147 Android permissions and 735
third-party defined permissions. The amount of third-party defined permissions is more
than that of Android permissions, but only requested in few samples. Thus, only Android
permissions are considered in this paper. The top 15 permissions requested in benign and
malware samples are shown in Figure 2. The INTERNET, ACCESS_ NETWORK_ST-
ATE, WRITE_EXTERNAL_STORAGE and READ_PHONE_STATE permissions are the
most requested permissions in both categories. The malware samples prefer to request the
permission related to short messages, such as READ_SMS, SEND_SMS, and WRITE_SMS.

In order to obtain the minimal feature vector, each of the requested permissions is
pruned in accordance with the difference value of declared ratio, the information gain,
and the permission category, respectively.
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FiGURE 2. The top 15 requested permissions from the samples

3.1. The difference value of declared ratio (D-value). For a single Android per-
mission, the declared ratio is defined as the ratio of the requested count of this permission
to the requested count of all the 147 Android permissions. The declared ratio is cal-
culated for benign and malware samples, respectively. The permission is selected if its
declared ratio of malware samples is larger than that of benign samples. There are 68
Android permissions matching the condition. Moreover, there are 4 permissions declared
only in malware samples, and they are GLOBAL_SEARCH_CONTROL, BRICK, DIAG-
NOSTIC and SET_ACTIVITY _WATCHER. These permissions are ranked in descending
order according to the difference value of declared ratio. The top N permissions are
used to construct the feature vector, where NV is varied from 10 to 72. The classification
performance is shown in Figure 3.

As illustrated in Figure 3, the TPR reaches 76% and F-score reaches 84% with all the
72 permissions taken into consideration. In the process of gradually reducing the feature
vector length to 40, the performance is almost not affected. However, the performance
declines apparently when decreasing the length to 30. The TNR remains above 90%
whatever the length of feature vector is. That means most of the benign samples are
correctly classified. Thus, the minimal feature set can be reduced to the size of 40 using
the method based on the difference value of declared ratio.

3.2. Information gain (IG). Information gain is used as the feature selection algo-
rithms in this evaluation. Information gain is the method of determining the rank of
appropriate feature through the entropy difference between the case of accurate classifi-
cation through feature and the case otherwise. The 147 Android permissions are sorted
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F1GURE 3. The classification performance with features based on the D-
value method
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F1GURE 4. The classification performance with features based on the IG method

by their information gain value in descending order. The top N permissions are selected
to construct the feature vector, where N varies from 10 to 147. The classification perfor-
mance is shown in Figure 4.
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As shown in Figure 4, adopting all 147 Android permissions leads to the best perfor-
mance. TPR and F-score reach approximately 88% and 91%, respectively. When the
length of feature vector is reduced to 50, there is little impact on the performance. If
only the top 40 permissions are used, the performance declines slightly. The performance
declines apparently if the length of feature vector is further decreased to 10. The TNR
remains above 90% whatever the length of feature vector is. Thus, the minimal feature
set can be reduced to the size of 40 using the method based on information gain.

3.3. Permission category (PC). The Android permissions are classified into four cat-
egories: normal, dangerous, signature, and signatureOrSystem [9]. The category of dan-
gerous permissions means high risk, because giving this kind of permission can result in
the following two consequences. First, access to private user data is approved. Second,
the requesting applications obtain control over the device and become a threat to the
user’s privacy. There are 47 dangerous permissions in all samples. All the 47 dangerous
permissions are selected to construct the feature vector. Meanwhile, we selected the top
47 permissions using the above two methods respectively. The evaluation results of the
three methods are listed in Table 1.

TABLE 1. The evaluation results

Method TPR (%) TNR (%) F-Score (%)
NB C45 KNN RF NB C45 KNN RF NB C4.5 KNN RF
D-value 68.8 74.1 76.5 76.1 934 99.2 99.2 994 62.3 82.0 83.7 84.2
IG 68.8 81.5 86.4 86.0 96.5 98.9 989 99.2 65.6 859 88.7 89.2
PC 70.1 709 740 734 953 99.1 99.2 993 676 79.6 822 821

The D-value method and the permission category method exhibit similar performances.
When features are selected by the information-gain-based method, the feature set consists
of more permission requested by benign samples. Therefore, the overall performance of
information gain method outperforms the other methods. However, it should be noticed
that the permissions declared in the manifest file are the requested permissions, other than
the required permissions. If the malicious developers declared more permission usually
in benign samples, the malware application may be classified into benign application
incorrectly. The risk can be mitigated by selecting the feature set using the method of
D-value of declared ratio. Overall consideration, the 40 permissions feature set selected by
the method of D-value of declared ratio is considered as the better feature set for Android
malware detection.

4. Minimal Feature Selection for API-based Detection. In this section, we extract
Android API from smali files disassembled by apktools. There are more than 200 million
API records extracted from all the samples. The APIs which are not declared in the
Android API level 21 documents [10] are removed. After that, there are 39303 Android
APIs left. As shown in Figure 5, there are no significant differences in the top 15 invoked
Android APIs in benign and malware samples. There are 9 API in common in the top 15
APT list.

Here we used the difference value of invoked ratio to select the feature API. For a single
Android API, the invoked ratio is defined as the ratio of the invoked count of this API
to the invoked count of all the 39303 Android APIs. The API is selected if its invoked
ratio of malware samples is more than that of benign samples. There are 8616 Android
APIs that match the condition. Moreover, there are 1302 APIs invoked only in malware
samples. Because the total number of API features is too large, we only focus on the 260
APIs with the difference value larger than 0.15. By increasing the difference value, we
constructed the feature vectors with APIs from top 260 to top 10.
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F1GURE 5. The top 15 requested Android APIs from the samples
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FIGURE 6. The classification performance with API feature sets

As shown in Figure 6, when only the top 60 APIs are used, the performance declines
slightly. TPR, TNR and F-score reach 88%, 99%, 90%, respectively. The performance
declines apparently if the length of feature vector further drops to less than 60. Thus, the
minimal API feature set can be reduced to the length of 60 using the method based on
the difference value of invoked ratio.

5. Performance Comparison. In this section, we compared the classification perfor-
mance of feature sets constructed by different feature selection methods. These feature
sets include the 40 permissions set, the 147 permissions set, the 60 Android APIs set and
the 260 Android APIs set.

As illustrated in Figure 7, the performance of Android API set is higher than that of
permission set. With the KNN classification algorithm, the TPR gets to 95%, TNR gets
to 99%, and F-score gets to above 90%. However, the Android APIs are collected from
a large number of disassembled smali files. The extracting process is more complicated
and time consuming than the process of using permission features which are declared in a
single manifest file. The KNN classifier always outperforms the other three classification
algorithms on the four feature sets. The performance of Naive Bayes classifier is the



ICIC EXPRESS LETTERS, VOL.10, NO.7, 2016 1611

I iveBayves . ] BN
—
031 g m
I RanclomForest w7
DB}
® g
= =
0.7+
06t
05 ,
40 147 ] 260 40 147 60
The length of feature set [#] The length of feature set [#]
1
0.3+ M 7] ]
0Bk
=
o
@ 0.7
('
06t
D5}
0.4
40 147 B0 260

The lencth of feature set [#]

FIGURE 7. The evaluation results with the four feature sets

worst. However, as seen in Figure 3, Figure 4 and Figure 6, the performance of Naive
Bayes classifier is not affected by the size of feature sets.

Moreover, it should be noticed that there are 2% samples whose feature vectors are all
zero by using the 147 permissions set. That means the requested permissions of these
samples are not covered by the 147 permissions set. If the set of 40 permissions is used,
there are more than 10% samples whose feature vectors are all zero. In such situation, we
classified these samples into benign applications. However, there are only 1.3% samples
with all zero feature vectors by using the 60 Android APIs set. Therefore, the set of
Android APIs is more efficient to detect the malware.

6. Conclusions. In this paper, we investigated on the minimal feature selection for An-
droid malware detection. We focused on the requested permission feature and Android
API feature. For permission feature, three methods are used to select the permission
feature set, including the method of difference value of declared ratio, the method of
information gain and the method of permission category. For Android API feature, the
method of difference value of invoked ratio is used to select the feature set. By comparing
the performance of various classifiers trained with various feature sets, we obtain the min-
imal permission set with 40 permissions and the minimal Android API set with 60 APIs.
The extraction of Android API feature is more complicated than that of the permissions,
but the performance of the Android API set is better than that of the permission set.

As mentioned in Section 5, the size of feature sets has slight influence on the performance
of Naive Bayes classifier. However, the performance metrics of Naive Bayes classifier is
lower than those of the other three classifiers. Thus, it is possible to improve the Naive
Bayes classifier to achieve comparable performance with fewer features. This is left as
future work.
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