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Abstract. In this paper, the finite-time stability and stabilization problems of a class
of stochastic networked control systems (NCSs) with partly unknown transition proba-
bilities are investigated. An iterative approach is proposed to model NCSs with bounded
packet dropout as Markovian jump linear systems (MJLSs). The transition probabilities
of MJLSs are partly unknown due to the complexity of network. The system under consid-
eration is more general, which covers the systems with completely known and completely
unknown transition probabilities as two special cases. Based on MJLSs theory and finite-
time stability theory, the sufficient conditions for finite-time stability and stabilization
of the underlying systems are derived via linear matrix inequalities (LMIs) formulation.
Lastly, an illustrative example is given to demonstrate the effectiveness of the proposed
results.
Keywords: Networked control systems, Packet dropout process, Finite-time stabiliza-
tion

1. Introduction. During the past two decades, NCSs have been widely studied, in which
the feedback loops are implemented over some communication links [1]. The presence of
such links enables the components (for instance, controllers, sensors and actuators) to be
distributed in the different places. These components can share communication channels,
which in general include both controller-to-actuator and sensor-to-controller channels.
The sharing of the channels gives rise to many advantages including low cost, easy main-
tenance, flexible system structure, etc. [2]. Because of these attractive benefits, many
industrial companies and institutes have shown interest in applying networks for remote
industrial control purposes and factory automation [3]. However, as these components
utilize common shared resources, i.e., the packet-based channels which are inherently im-
perfect, many new challenges are introduced including intermittent packet dropouts, the
induced time delay, and the quantization errors [4]. Among all the challenging issues that
emerged, packet dropouts are recognized to be one of the main causes for performance de-
terioration or even instability of NCS, and thus attract considerable research interests [5].
Various approaches have been proposed to model packet dropouts in NCS in order to bet-
ter examine the role of packet dropouts with regard to system stability and performance,
and develop control strategies to decrease their effects [6]. One of the most important
approach is to model NCSs with packet dropout as MJLSs [7-10]. As a dominant factor,
the transition probabilities in the jumping process determine the system behavior to a
large extent. The analysis and synthesis results in [7-10] are based on the assumption
that the complete knowledge of the transition probabilities is known. However, in almost
all types of communication networks, either the variation of delays or the packet dropouts
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are vague and random in different running periods of networks. Thus, all or part of the
elements in the transition probabilities matrix are hard or costly to obtain.

On the other hand, the concept of Lyapunov asymptotic stability is largely known to the
control community. However, Lyapunov asymptotic stability is not enough for practical
applications, because there are some cases where large values of state variables are not
acceptable. For this purpose, the concept of finite-time stability (FTS) can be used. Some
early results on FTS can be found in [11], more recently the concept of FTS has been
revisited in the light of recent results coming from LMIs theory, which has made it possible
to find less conservative conditions for guaranteeing FTS and finite time stabilization
[12,13]. In [14], the finite-time control problem of a class of networked control systems
with time delay is investigated. In [15-17], sufficient conditions for finite time stability of
networked control systems with packet dropout are provided. However, controller design
methods are not given. In [18,19], the finite-time stabilization problems of a class of
networked control systems with bounded Markovian packet dropout are investigated. In
[20], the finite-time boundedness and stabilization problems of a class of networked control
systems with bounded packet dropout are investigated. In [21], the stochastic finite-time
stabilization and H∞ control problem for one family of linear discrete-time systems over
networks with packet loss are investigated. In [22], state feedback control for networked
control systems with consideration of both network-induced delay and packet dropout is
presented.

To date and to the best of our knowledge, the problems of stochastic networked control
systems with partly unknown transition probabilities have not fully investigated and still
remain challenging, although results related to systems over networks with packet loss are
reported in the existing literature, which motivates the study of this paper. The main
contributions are given as follows: (1) Definitions of finite-time stabilization are extended
to stochastic networked control systems with packet dropout. (2) Sufficient conditions for
finite-time stabilization in terms of linear matrix inequalities formulation are given.

This paper is organized as follows. An iterative method to model NCSs with bounded
Markovian packet dropout as MJLSs is proposed in Section 2. The stochastic stability
and stabilization conditions for NCSs are derived via LMIs in Section 3. In Section 4, a
numerical example is provided to illustrate the effectiveness of our results. Concluding
remarks are given in Section 5.

2. Problem Formulation and Preliminaries. The framework of NCSs considered in
this paper is depicted in Figure 1, and the plant to be controlled is described by the
following linear discrete-time systems:

x(k + 1) = Ax(k) + Bu(k) (1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the control input. A and B are known real
constant matrices with appropriate dimensions. We assume that (A,B) is controllable.

Figure 1. Illustration of NCSs over communication network
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Let I = {i1, i2, · · · }, which is a subsequence of N = {1, 2, · · · }, denote the sequence of
time points of successful date transmission from sensor to actuator. The state feedback
controller law is

u(k) = Kx(k) (2)

where K ∈ Rm×n is to be designed. The control input is held at the previous value by
the zero-order hold during the two successively successful transmitted instants, that is

u(l) = u(ik) = Kx(ik), ik ≤ l ≤ ik+1 − 1.

Thus the closed-loop system is

x(l + 1) = Ax(l) + BKx(ik), ik ≤ l ≤ ik+1 − 1. (3)

Applying iteratively (3), we can obtain

x(ik+1) =

(
Aik+1−ik +

ik+1−ik−1∑
r=0

ArBK

)
x(ik), ik ∈ I. (4)

Define the packet dropout process as follows:

r(ik) = ik+1 − ik (5)

which takes values in the finite state space S = {1, 2, · · · , s}, where s is defined as

s = max
ik∈I

(ik+1 − ik).

Then the closed-loop system (4) can be rewritten as a jump linear system:

x(ik+1) =

Ar(ik) +

r(ik)−1∑
r=0

ArBK

 x(ik), ik ∈ I. (6)

The packet dropout process {r(ik)} is described by a discrete-time homogeneous Markov
chain with mode transition probabilities

πij = P(r(ik+1) = j|r(ik) = i) ≥ 0, ∀i, j ∈ S.

The corresponding transition probabilities are defined as

Π =


π11 π12 · · · π1s

π21 π22 · · · π2s
...

...
. . .

...
πs1 πs2 . . . πss

 .

Remark 2.1. It is worth pointing out that the packet dropout process {r(ik), ik ≥ 0}
includes both sensor-to-controller and controller-to-actuator packet dropouts.

It is noticed that the ideal knowledge on the transition probabilities of packet dropout
process is definitely expected to simplify the system analysis and design. However, the
likelihood of obtaining such available knowledge is actually questionable, and the cost
is probably expensive due to the complexity of networks [23]. Hence, it is necessary to
discuss packet dropout process with partly unknown transition probabilities, i.e., some
elements of matrix Π are unknown. For instance, the system (6) with s = 4, the transition
probabilities matrix Π may be as

Π =


π11 ◦ π13 ◦
◦ ◦ ◦ π24

π31 ◦ π33 ◦
◦ ◦ π43 π44


where “◦” represents the inaccessible elements.
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Denote

S = S i
K + S i

UK, ∀i ∈ S
with

S i
K = {j : πij is known} (7)

S i
UK = {j : πij is unknown}

If S i
K ̸= ∅, it is further described as

S i
K =

(
Ki

1, · · · ,Ki
m

)
, ∀1 ≤ m ≤ N (8)

where Ki
m ∈ N represents the mth known element with the index Ki

m in the ith row of
matrix Π.

The main aim of this paper is to find some sufficient conditions which guarantee that
stochastic networked control system (6) with partly unknown transition probabilities is
stable over a finite-time interval. This concept can be formalized through the following
definition.

Definition 2.1. Stochastic networked control system (6) is said to be finite-time stable
with respect to (α, β, R, N), where R is a positive-definite matrix, 0 < α < β, if for any
k ∈ {1, · · · , N}

xT (i0)Rx(i0) ≤ α2 =⇒ E
{
xT (ik)Rx(ik)

}
≤ β2.

To this end, the following lemmas will be essential for the proofs in the next section.

Lemma 2.1. For a constant γ > 0, stochastic networked control system (6) with known
transition probabilities is finite-time stable with respect to (α, β,R,N) if there exist matrix
Pi > 0, i ∈ S, and two positive scalars λ1, λ2, such that the following conditions hold

λ1I ≤ Pi ≤ λ2I (9)

(γ + 1)Nα2λ2 − β2λ1 < 0 (10)

s∑
j=1

πij(A
j + BjK)T P̃j(A

j + BjK) − (γ + 1)P̃i < 0 (11)

where

P̃i = R
1
2 PiR

1
2 (12)

Bj =

j−1∑
r=0

ArB (13)

Lemma 2.2. (see [23]). For any matrices U ∈ Rn×n and V ∈ Rn×n, if the matrix V > 0,
then we have

UT + U − V ≤ UT V −1U.

Lemma 2.3. (Schur complement lemma, see [23]). For a given symmetric matrix W =[
W11 W12

W T
12 W22

]
, where W11 ∈ Rp×p,W22 ∈ Rq×q, and W12 ∈ Rp×q, then the following three

conditions are mutually equivalent

1. W < 0,
2. W11 < 0, W22 − W T

12W
−1
11 W12 < 0,

3. W22 < 0, W11 − W12W
−1
22 W T

12 < 0.
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3. Main Results. In this section, we will find a state feedback control matrix K, such
that stochastic networked control system (6) with partly unknown transition probabilities
is finite-time stable with respect to (α, β, R, N). In order to solve the problem, the
following theorem will be essential.

Theorem 3.1. For a constant γ > 0, stochastic networked control system (6) with partly
unknown transition probabilities is finite-time stable with respect to (α, β, R, N) if there
exist matrix Pi > 0, i ∈ S, and two positive scalars λ1, λ2, such that the following
conditions hold

λ1I ≤ Pi ≤ λ2I (14)

(γ + 1)Nα2λ2 − β2λ1 < 0 (15)(
Aj + BjK

)T
P̃j

(
Aj + BjK

)
− (γ + 1)P̃i < 0, ∀j ∈ S i

UK, (16)

∑
j∈Si

K

πij

(
Aj + BjK

)T
P̃j

(
Aj + BjK

)
− (γ + 1)

∑
j∈Si

K

πij

 P̃i < 0, ∀j ∈ S i
K (17)

where P̃i and Bj are defined in (12) and (13) respectively.

Remark 3.1. It is noticed that if S i
UK = ∅, ∀i ∈ S, the underlying system is the one

with completely known transition probabilities, which is Markovian packet dropout process
with known transition probabilities [17-19]. On the other hand, if S i

K = ∅, ∀i ∈ S, the
underlying system is the one with completely unknown transition probabilities, which is
arbitrary packet dropout process [17,19].

Now we turn back to our original problem, that is to find sufficient conditions which
guarantee that the system (6) with the controller (2) is finite-time stable with respect to
(α, β, R, N). The solution of this problem is given by the following theorem.

Theorem 3.2. For a constant γ > 0, stochastic networked control system (6) with partly
unknown transition probabilities is finite-time stable with respect to (α, β, R, N) if there

exist matrix X̃i, i ∈ S, G ∈ Rn×n, Y ∈ Rm×n, and two positive scalars λ1, λ2, such that
the following conditions hold

λ−1
2 R−1 ≤ X̃i ≤ λ−1

1 R−1 (18)

λ−1
1 (γ + 1)Nα2 − λ−1

2 β2 < 0 (19)[
−G − GT + (γ + 1)−1 X̃i (AjG + BjY )

T

∗ −Xj

]
< 0, ∀j ∈ S i

UK (20)−G − GT + (γ + 1)−1

( ∑
j∈Si

K

πij

)−1

X̃i Li
K

∗ −X i
K

 < 0, ∀j ∈ S i
K (21)

where

Li
K =

[√
πiKi

1

(
AKi

1G + BKi
1
Y
)T

· · · √
πiKi

m

(
AKi

mG + BKi
m
Y
)T
]

(22)

X i
K = diag

(
X̃Ki

1
· · · X̃Ki

m

)
, ∀j ∈ S i

K (23)

Then the desired stabilizable control matrix is given by

K = Y G−1. (24)

Remark 3.2. From the development in the above theorems, one can clearly see that
our obtained stability and stabilization conditions actually cover the results for completely
Markovian packet dropout process and arbitrary packet dropout process.
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Remark 3.3. For the case of ik < l ≤ ik+1 − 1, the system transient performance can
also be accommodated. In fact, denote h(ik) = l − ik ∈ S. Then we have

x(l) =

Ah(ik) +

h(ik)−1∑
r=0

ArBK

x(ik), ik ∈ I. (25)

By Theorem 3.2, the system transient performance can be accommodated.

4. Numerical Example. In this section, to illustrate the effectiveness of the proposed
method, we apply the results in Section 3 to a cart and inverted pendulum system. The
state variables are x, ẋ, θ, and θ̇. Assume that m1 = 1kg, m2 = 0.5kg, L = 1m, and there
are no friction surfaces. The sampling time is T = 0.1. The controllers are designed using
the discretized linearized model, which has the state-space model as

x(k + 1) = Ax(k) + Bu(k) (26)

where

A =


1.0000 0.1000 −0.0166 −0.0005

0 1.0000 −0.3374 −0.0166
0 0 1.0996 0.1033
0 0 2.0247 1.0996



B =


0.0045
0.0896
−0.0068
−0.1377

 .

The discretized system is unstable because the eigenvalues of A are 1, 1, 1.5569, 0.6423.
Furthermore, we assume that the packet dropout upper bound is s = 4 and the transition
probabilities matrix is as follows

Π =


0.2 ◦ 0.3 ◦
◦ ◦ 0.4 0.2
◦ 0.5 ◦ 0.1

0.6 ◦ ◦ ◦

 .

For given γ = 1, α = 1, β = 5, R = I, N = 10, according to Theorem 3.2, the control
matrix is given by

K = Y G−1 =
[
3.1623 3.6878 −30.8732 −5.6879

]
.

The states θ and θ̇ of the closed-loop system caused by the discretized model and the
obtained controller are shown in Figure 2.

5. Conclusions. In this paper, we have considered the finite-time stabilization problems
of a class of stochastic NCSs with partly unknown transition probabilities. Based on the
iterative approach, the NCSs with bounded packet dropout are modeled as jump linear
systems. The sufficient conditions for finite-time stabilization of the underlying systems
are derived via LMIs formulation. Lastly, an illustrative example is given to demonstrate
the effectiveness of the proposed results. The finite-time stabilization problem for NCSs
with both stochastic packet dropout and time delay is a future work.
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Figure 2. The states θ and θ̇ of the closed-loop system
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