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Abstract. In this paper, Bernstein fuzzy system with polynomial consequents is estab-
lished for predicting interval-valued time series. Prediction of interval-valued time series
can be transferred into forecasting the mid-value and half range value of interval values.
Accordingly, parameters identification of Bernstein fuzzy system is investigated. Fuzzy
C-means method is used to determine the center of membership function. The width of
membership function is optimized by genetic algorithm. And, partial least square algo-
rithm is applied to determine the parameters of generalized Bernstein polynomials. Some
numerical simulations show that Bernstein fuzzy system can forecast the interval-valued
time series with high accuracy.
Keywords: Bernstein fuzzy system, Interval-valued time series, Prediction

1. Introduction. As is well known, time series is an effective tool to describe dynamic
system. In the classical time series theory, the state at each time usually takes the real
number. However, in some application areas, such as stock market, temperature model
and production process, some variables need to be represented as interval-valued data.
Accordingly, how to use interval-valued data to establish and analyze the mathematical
model of the objective system becomes a hot topic.

Some authors establish various neural networks to handle the interval-valued data.
In [1], the forecasting model combined with autoregressive model and artificial neural
network is proposed for analyzing the interval-valued time series. In [2], a complex-
valued radial basis function neural network is applied to predict the interval-valued time
series. In [3], a type-2 fuzzy neural network is given to forecast the dynamic model. In
[4], the model of multilayer perceptron is established to handle interval-valued data. In
[5], interval-valued fuzzy set is utilized to design recurrent neural network for predicting
dynamic model. In addition, some authors attempt to apply various fuzzy modeling
methods to process interval-valued data. In [6], when state variable weights of rules are
taken as interval value, the approximation properties of the corresponding fuzzy system
are investigated. In [7], fuzzy reasoning method which can handle the interval-valued
data is established. In [8], an interval-valued intuitionistic fuzzy weighted algorithm is
applied for the medical diagnosis. In [9], fuzzy correlation based on interval-valued data
is investigated. In order to analyze the approximation properties of fuzzy system to
nonlinear function, in [10], the identification algorithm of interval fuzzy model is given.

From the existing results, we find that many fuzzy systems and fuzzy neural networks
are obtained based on Mamdani-type model and TS-type model. The consequent of each
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fuzzy rule is usually represented by linear model. However, for many complex systems, lin-
ear model could not fully reflect the nonlinear feature of the objective system in each local
region. Hence, in this paper, we will establish a novel fuzzy system with Bernstein poly-
nomial consequents to investigate interval-valued time series. The merit of the proposed
model is that in each local region, Bernstein polynomial is used to model the objective
system which can effectively describe the nonlinear feature. Since Bernstein polynomials
have been widely used in function approximation, fuzzy system generalized by Bernstein
polynomials will enrich the structure of fuzzy model and improve the forecasting accuracy
for interval-valued time series.

This paper is organized as follows. In Section 2, the representation of Bernstein fuzzy
system and some preliminaries are introduced. In Section 3, the identification method
for the Bernstein fuzzy system is investigated. In Section 4, some numerical examples
are provided to illustrate the proposed method. In Section 5, some main conclusions are
summarized.

2. Bernstein Fuzzy System. In this section, we will introduce the mathematical ex-
pression of Bernstein fuzzy system and some notations which are used in this paper.
Denote C[a, b] as the space of continuous function on [a, b]. Firstly, we introduce two
definitions.

Definition 2.1 ([11]). Suppose that f ∈ C[0, 1], then the generalized Bernstein polyno-
mials of degree n (n > 1) is defined as(

B̄nf
)
(x) =

n∑
k=0

n!
k!(n−k)!

xk(1 − x)n−kf(xk)

where 0 = x0 < x1 < · · · < xn = 1.

Different from traditional Bernstein polynomials, the partition point xk may not be
equidistant partition. Then, we give the definition of multi-dimensional generalized Bern-
stein polynomials.

Definition 2.2. Suppose that f ∈ C([0, 1] × · · · × [0, 1]), then the multi-dimensional
generalized Bernstein polynomial is defined as(
B̄m1,··· ,mnf

)
(x) =

m1∑
k1=0

· · ·
mn∑

kn=0

(
n∏

j=1

(
mj

kj

)
· xkj

j · (1 − xj)
mj−kj

)
· f(x1k1 , · · · , xnkn) (1)

where x = (x1, · · · , xn), xiki
(ki = 1, . . . , mi; i = 1, . . . , n) are the partition points in [0, 1].

Further, we will give the mathematical expression of Bernstein fuzzy system. Fuzzy
rules of Bernstein fuzzy system can be represented as follows.

If x1 is Ai1 and · · · and xn is Ain, then y = Hi(x1, · · · , xn) (2)

where i = 1, . . . , N and

Hi(x1, · · · , xn) =

mi1∑
k1=0

· · ·
min∑
kn=0

(
n∏

j=1

(
mij

kj

)
x

kj

j (1 − xj)
mij−kj

)
· y(i)

k1···kn
.

Based on fuzzy rule (2), Bernstein fuzzy system determined by singleton fuzzifier, prod-
uct inference engine and centroid defuzzifier can be expressed as

y =
N∑

i=1

Ai(x) · Hi(x) (3)

where Ai(x) =
n∏

j=1

Aij(xj) and Aij(xj) = exp
(
−(xj − cij)

2/σ2
ij

)
.
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It can be seen that in each local region the proposed model is represented as generalized
Bernstein polynomials which means that the weighted sum of some generalized Bernstein
polynomials is established to approximate the objective model.

3. Identification of Bernstein Fuzzy System under the Interval-valued Data.
In this section, we will propose the identification algorithm to determine parameters of
the Bernstein fuzzy system and use the proposed model to forecast interval-valued time
series.

An interval-valued time series is denoted by {[Xt](t = 1, 2, . . .)}. Xt is taken as interval
value, i.e., Xt = [XL

t , XR
t ], where XL

t and XR
t respectively denote the lower bound and

upper bound of the time series at time t. The interval-valued time series can be divided
into two time series models with crisp values, i.e., {X1

t , t = 1, 2, . . .} and {X2
t , t = 1, 2, . . .},

where X1
t =

XL
t +XR

t

2
is the mid-value of the interval and X2

t =
XR

t −XL
t

2
is the half range

of the interval. Accordingly, prediction of interval-valued time series can be transferred
into prediction of above two time series models. Without loss of generality, we take
{X1

t , t = 1, 2, . . .} as an example to introduce how to design Bernstein fuzzy system to

predict it. A group of training samples
{(

x1
t−(n−1), . . . , x

1
t , x

1
t+1

)
, t = n, n + 1, . . .

}
could

be generated by time series {X1
t , t = 1, 2, . . .}, where n is the order,

(
x1

t−(n−1), . . . , x
1
t

)
is

the input value and x1
t+1 is the output value.

Based on above samples, we introduce the identification method for the Bernstein fuzzy
system. Parameters to be identified include ci = (ci1, · · · , cin), σi = (σi1, · · · , σin) and

y
(i)
k1···kn

.
Firstly, for above samples, fuzzy C-means (FCM) method is used to determine the

center ci (i = 1, . . . , N) of input variables.
Then, a type of nonlinear iterative partial least squares (NIPALS) algorithm [12,13]

is applied to calculate the weights y
(i)
k1···kn

in (3).
∏n

j=1 mij is set to be the upper bound

number of components for Ai(x) ·
∏n

j=1

(
mij

kj

)
x

kj

j (1 − xj)
mij−kj (kj = 0, . . . , mij, j =

1, . . . , n, i = 1, . . . , N). Then by progressively trying to find relations between latent

variables of Ai(x) ·
n∏

j=1

(
mij

kj

)
x

kj

j (1 − xj)
mij−kj and the output y, the coefficients y

(i)
k1···kn

can be obtained.
Further, genetic algorithm (GA) is proposed to tune the width σi (i = 1, . . . , N).

The fitness value is the output of Bernstein fuzzy system. A production with r chro-
mosomes is randomly generated, denoted by xij (i = 1, . . . , r; j = 1, . . . , N), where

xij =
(
x

(1)
ij , · · · , x

(n)
ij

)
denotes the width of fuzzy sets in (3). By (3), we can compute the

fitness value of each chromosome. By selection, crossover and mutation new population
can be updated. In this way, we can obtain the width σi (i = 1, . . . , N). In the following,
we summarize how to design Bernstein fuzzy system to predict interval-valued time series.

Step 1. Divide interval-valued time series {[Xt](t = 1, 2, . . .)} into two models: mid-
value time series {X1

t , t = 1, 2, . . .} and half range value time series {X2
t , t = 1, 2, . . .}.

Step 2. Initialize some parameters, including the order of time series, the number of
clustering centers, the number of population and the maximum number of iteration.

Step 3. Use fuzzy C-means clustering method to determine the center of clusters,
denoted by ci (i = 1, . . . , N). Let ci (i = 1, . . . , N) be the center value of fuzzy set Ai(x).

Step 4. Randomly generate the width σi (i = 1, . . . , N) of fuzzy set Ai(x).

Step 5. Use NIPALS algorithm to compute parameters y
(i)
k1···kn

in Equation (3).
Step 6. Carry out selection, crossover and mutation to produce new production and

update the width σi (i = 1, . . . , N).
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Step 7. If the number of iteration is less than the maximum number, then go to step
5; else stop.

4. Numerical Examples. In this section, some numerical simulations are provided to
illustrate the validity of the proposed method for the interval-valued time series. In the
simulation, some notations are defined as follows. The orders of time series and the
generalized Bernstein fuzzy system are denoted by n and mi (i = 1, . . . , n). The numbers
of fuzzy rules and the population size are denoted by N and r. The generation of GA is
M . The duplication rate, crossover rate and mutation rate are denoted by Pd, Pc and Pm.

Example 4.1. Two synthetic interval-valued time series models are given below:

(I): X1
t = 1.5X1

t−1 · exp
(
−
(
X1

t−2

/
2
)2)

+ εt, εt ∼ N(0, 0.5), X2
t ∼ U [0, 2]

(II): X1
t = 4X1

t−1

(
1 − X1

t−1

)
, X2

t ∼ U [1, 2].

We will respectively design two Bernstein fuzzy systems to predict above interval-valued
time series models. In the simulation, 300 observation data with 200 training samples and
100 testing samples are obtained. For model (I), parameters of Bernstein fuzzy system
are chosen as n = 2, m1 = 3, m2 = 3, N = 15, M = 100, r = 30, Pd = 0.67, Pc = 0.33,
Pm = 0.05. For model (II), parameters of Bernstein fuzzy system are chosen as n = 1,
m1 = 3, N = 7, M = 100, r = 30, Pd = 0.67, Pc = 0.33, Pm = 0.05.

All simulations are performed 20 trials. The simulation results about testing samples
are shown in Figures 1-8, where vertical line segment denotes the interval-valued data on
each time, dotted lines denote the actual lower bound series and upper bound series and
solid lines denote the corresponding forecasted series. From these simulation results, we
can know that Bernstein fuzzy systems can effectively model the lower bound and upper
bound of the objective system. These facts illustrate the validity of Bernstein fuzzy system
in forecasting the synthetic interval-valued time series.

Figure 1. The actual value
of model (I)

Figure 2. The forecasted
value of model (I)

Example 4.2. Experimental results on New York Stock Exchange.1

We will use Bernstein fuzzy system to predict ten stock prices from the New York
Stock Exchange. The lowest and highest trading prices of the day are used to generate
intervalvalued time series. The basic information of these samples is shown in Table 1.

1New York Stock Exchange is available at http://finance.yahoo.com/.
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Figure 3. Lower bound of
model (I)

Figure 4. Upper bound of
model (I)

Figure 5. The actual value
of model (II)

Figure 6. The forecasted
value of model (II)

Figure 7. Lower bound of
model (II)

Figure 8. Upper bound of
model (II)

Table 1. Basic information about the data sets: symbols and sample sizes

Symbols AA BA CSCO DD DIS INTC JNJ MSFT T XOM
size 383 540 872 1038 1208 2238 2487 3620 4171 6375
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The interval average relative variance (ARV) [14,16] is used to test the forecast errors,
i.e.,

ARV =

K∑
t=1

(
XL

t+1 − X̂L
t+1

)2

+
K∑

t=1

(
XR

t+1 − X̂R
t+1

)2

K∑
t=1

(
XL

t+1 − X̄L
)2

+
K∑

t=1

(
XR

t+1 − X̄R
)2

where K is the number of samples,
[
XL

t , XR
t

]
is the actual value,

[
X̂L

t , X̂R
t

]
is the fore-

casted value, X̄L
t and X̄R

t are respectively the mean values of lower bound and upper
bound.

The first two-thirds of above samples are chosen as the training samples and the re-
maining samples are used for testing. Let n = 1, m1 = 3, N = 5, M = 100, r = 30,
Pd = 0.67, Pc = 0.33, Pm = 0.05. The simulation results are shown in Table 2.

Table 2. ARV for interval stock price time series

Symbols
Holt’s

([14,16])
iMLP

([15,16])

DPSO/
PSO-FCRBF

([16])

The proposed
method

AA 0.487 0.458 0.165 0.0921
BA 0.354 0.508 0.274 0.0448

CSCO 0.632 0.385 0.412 0.0251
DD 0.702 0.231 0.396 0.0369
DIS 0.468 0.524 0.135 0.0337

INTC 0.356 0.308 0.038 0.0132
JNJ 0.529 0.462 0.254 0.0186

MSFT 0.481 0.418 0.214 0.1777
T 0.467 0.418 0.217 0.0075

XOM 0.628 0.519 0.118 0.0062

By the expression of ARV, we can find that the lower ARV value leads to the higher
forecasting accuracy. It is shown in Table 2 that the proposed method can achieve lower
ARV values for some financial time series models than other methods. These facts mean
that Bernstein fuzzy system is suitable for handling interval-valued financial time series.

5. Conclusions. In this paper, generalized Bernstein polynomials are applied to estab-
lish fuzzy system. And parameter identification method is proposed for the Bernstein
fuzzy system to predict the intervalvalued time series. Since Bernstein polynomials pos-
sess good approximation accuracy for nonlinear function, in the future, we will apply it
to performing pattern classification and solve differential equation.
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