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Abstract. This paper studies the problem of fault detection filter design for a class
of nonlinear discrete-time systems in presence of parameter uncertainties based on the
interval type-2 (IT2) T-S fuzzy model. On the basis of the IT2 T-S fuzzy model, the pa-
rameter uncertainty is tackled via membership functions with lower and upper bounds. A
novel IT2 fault detection filter is constructed to ensure the residual system to be asymp-
totically stable and satisfy the predefined H∞ performance. It is worth noting that the
filter to be designed does not share the same premise variables, number of fuzzy rules
and membership functions with the fuzzy model, which will lead to more flexible design.
Finally, a practical example is given to illustrate the effectiveness of the method proposed
in this paper.
Keywords: Nonlinear systems, Parameter uncertainties, IT2 T-S fuzzy model, Fault
detection filter

1. Introduction. In recent few decades, nonlinear systems have drawn considerable at-
tention. Due to the limited capability of traditional linear system theory, various nonlin-
ear control theories have been proposed, such as fuzzy control [1], sliding model control
[2, 3] and adaptive control [4]. Compared with other nonlinear control strategies, Takagi-
Sugeno (T-S) fuzzy model [5] can employ the priori and approximate the nonlinearity to
any accuracy with so-called “IF-THEN” rules, which has been applied successfully in [6].

On the other hand, fault detection has been an active research field since the high
safety, reliability and performance are demanded in industrial applications [7]. Using T-S
fuzzy model, considerable results about fault detection for nonlinear systems have been
reported. The authors in [8] proposed a filter-based fault detection scheme for a category
of uncertain nonlinear systems. The problem of robust fault detection for a class of
nonlinear systems with sensor faults and unknown bounded disturbances was investigated
in [9]. The authors in [10] proposed a filter scheme for nonlinear networked systems with
mixed delays and successive packet dropouts. An observer-based fault detection scheme
was provided for nonlinear systems with sensor fault in [11]. Considering networked
measurements, the authors in [12] focused on the problem of fault detection for nonlinear
systems based on the fuzzy-model-based approach.

However, it should be mentioned that the results mentioned above are on the basis
of type-1 T-S fuzzy model, in which membership functions are determined. Using such
membership functions, there exist some conservativeness when uncertainties appear in
systems. The interval type-2 fuzzy set was proposed in [13]. Membership functions of
[13] are interval rather than determined and in this case, the uncertainty can be captured
and expressed via membership functions with lower and upper bounds. Recently, some
remarkable results have been scattered in the literature, see for example, [14, 15, 16, 17]
and references therein. As an extension, the authors in [18] combined the IT-2 fuzzy
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set theory and T-S fuzzy model and constructed the IT2 T-S fuzzy model. With such
model, the stability and stabilization problems for nonlinear systems subject to parameter
uncertainties were investigated [18]. To consider more uncertain information, the footprint
of uncertainty was taken into consideration in [19]. Considering unmatched membership
functions, the authors in [20, 21] provided state-feedback-based and output-feedback-
based control strategies and filter design for uncertain systems in the framework of IT2
T-S fuzzy model. In [22, 23], the IT2 T-S model was applied to nonlinear uncertain
networked systems. However, there exist few fault detection results concerning nonlinear
uncertain systems on the basis of IT2 T-S fuzzy model, which motivates this work.

This paper investigates the problem of fault detection filter (FDF) design for a class of
nonlinear discrete-time systems subject to parameter uncertainties. The main contribu-
tions can be summarized as follows. 1) The problem of uncertainties existing in systems
is handled through IT2 T-S fuzzy model, which can facilitate capturing and expressing
uncertainties and reduce design conservativeness. 2) The problem of design flexibility is
improved via adopting independent premise variables, membership functions and number
of fuzzy rules for the FDF to be designed. 3) The problem of design conservativeness is
taking into consideration by considering the footprint of uncertainty. Finally, simulation
results are given to demonstrate the effectiveness of the method proposed in this paper.

The remainder of the paper is organized as follows. Section 2 describes the problem of
fault detection subject to parameter uncertainties. The conditions of designing the FDF
are formulated in Section 3. An practical example is provided to verify the usefulness of
the proposed method in Section 4. Finally, Section 5 concludes the paper.

Notation: Notations without explicit statement in this paper are as same as existing
relative papers.

2. Problem Statement and Preliminaries. Consider the following IT-2 T-S model
for a class of nonlinear systems with parameter uncertainties.
Plant Rule i: IF f1 (σ(k)) is Mi1, and f2 (σ(k)) is Mi2 and, . . . , and fθ (σ(k)) is Miθ,
THEN

x (k + 1) = Aix (k) + Biu (k) + E1iw(k) + E2if(k),

y (k) = Cix (k) + Diu (k) + F1iw(k) + F2if(k), i = 1, 2, . . . , r, (1)

where Mij denotes the fuzzy set, and f (σ(k)) = [f1 (σ(k)) , f2 (σ(k)) , . . . , fθ (σ(k))]T

stands for the premise variable. x (k) ∈ Rnx represents the state; y (k) ∈ Rny stands for
the measured output; u (k) ∈ Rnu denotes the control input; w (k) ∈ Rnw and f(k) ∈ Rnf

stand for the external disturbance and the fault vector to be detected, respectively, which
belong to l2 [0,∞). Ai, Bi, E1i, E2i, Ci, Di, F1i and F2i are system matrices with ap-
propriate dimensions. The following interval sets present the firing strength of the ith
rule:

Wi(σ(k)) = [mi(σ(k)),mi(σ(k))] ,

where

mi(σ(k)) =
θ∏

p=1

uMip
(fp(σ(k))) ≥ 0, mi(σ(k)) =

θ∏
p=1

uMip
(fp(σ(k))) ≥ 0, (2)

uMip
(fp(σ(k))) ≥ uMip

(fp(σ(k))) ≥ 0, mi(σ(k)) ≥ mi(σ(k)) ≥ 0, (3)

uMip
(fp(σ(k))), uMip

(fp(σ(k))), mi(σ(k)) and mi(σ(k)) denote lower and upper member-
ship functions, lower and upper grade of membership, respectively.

The overall dynamics of the IT2 T-S model (1) can be represented as follows:

x (k + 1) =
r∑

i=1

mi (σ(k)) [Aix (k) + Biu (k) + E1iw(k) + E2if(k)] ,
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y (k) =
r∑

i=1

mi (σ(k)) [Cix (k) + Diu (k) + F1iw(k) + F2if(k)] , (4)

where mi (σ(k)) =
ai(σ(k))mi(σ(k))+ai(σ(k))mi(σ(k))

r∑
i=1

(ai(σ(k))mi(σ(k))+ai(σ(k))mi(σ(k)))
≥ 0,

r∑
i=1

mi (σ(k)) = 1, 0 ≤ ai(σ(k)) ≤

1, 0 ≤ ai(σ(k)) ≤ 1, ai(σ(k)) + ai(σ(k)) = 1 with ai(σ(k)) and ai(σ(k)) being nonlinear
weighting functions and mi (σ(k)) regarded as the grades of membership.

The filter-based fault detection scheme is adopted in this paper. To construct more
flexible IT2 filter, the FDF to be designed does not need to share the same premise
variables, number of fuzzy rules and membership functions with the plant. And the IT2
FDF with s-rule is described as follows:
Filter Rule j: IF g1 (σ(k)) is Nj1, and g2 (σ(k)) is Nj2 and, . . . , and gΨ̄ (σ(k)) is NjΨ̄,
THEN

xf (k + 1) = Afjxf (k) + Bfjyf (k),

r(k) = Cfjxf (k) + Dfjyf (k), j = 1, 2, . . . , s, (5)

where xf (k) ∈ Rnx denotes the state of the FDF; r (k) ∈ Rnr is the “residual” that is
compatible with f(k) and Afj, Bfj, Cfj and Dfj are FDF matrices to be determined.
The following interval sets describe the firing strength of the jth rule:

Ωj(σ(k)) =
[
ωj(σ(k)), ωj(σ(k))

]
,

where ωi(σ(k))=
Ψ̄∏

q=1

uNjq
(gq(σ(k))) ≥ 0, ωi(σ(k))=

Ψ̄∏
q=1

uNjq
(gq(σ(k))) ≥ 0, uNjq

(gq(σ(k)))

≥ uNjq
(gq(σ(k))) ≥ 0, ωi(σ(k)) ≥ ωi(σ(k)) ≥ 0, uNjq

(gp(σ(k))), uNjq
(gp(σ(k))), ωi(σ(k))

and ωi(σ(k)) denote lower and upper membership functions, lower and upper grade of
membership, respectively.

Then, the overall fuzzy FDF is represented as follows:

xf (k + 1) =
s∑

j=1

ωj (σ(k)) [Afjxf (k) + Bfjyf (k)],

r(k) =
s∑

j=1

ωj (σ(k)) [Cfjxf (k) + Dfjyf (k)] , (6)

where ωj (x(k)) =
bj(σ(k))ωj(σ(k))+bj(σ(k))ωj(σ(k))

s∑
j=1

(bj(σ(k))ωj(σ(k))+bj(σ(k))ωj(σ(k)))
≥ 0,

s∑
j=1

ωj (σ(k)) = 1, bj(σ(k)) ∈[
0 1

]
, bj(σ(k)) ∈

[
0 1

]
, bj(σ(k)) + bj(σ(k)) = 1, bi(σ(k)) and bj(σ(k)) are pre-

defined nonlinear functions and ωj (σ(k)) is regarded as the grade of membership.
In order to identify the fault timely when it arises, a residual reference model is intro-

duced in the form of f̄(z) = W (z)f(z). A minimal realization of f̄(z) = W (z)f(z) is as
follows:

x̂(k + 1) = Awx̂(k) + Bwf(k),

f̄(k) = Cwx̂(k) + Dwf(k), (7)

This section gives the evaluation function ∥r∥ and threshold Jth to determine whether
a systems is suffering fault or not. The details are as follows:{

∥r∥ > Jth → with faults → alarm,
∥r∥ ≤ Jth → no faults,
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where

∥r∥ , 1

L

√√√√ t2∑
k=t1

r(k)T r(k), L = t2 − t1 + 1, Jth , sup
w(k)∈l2, f(k)=0

∥r∥ .

The residual system is represented as follows:

x̃ (k + 1) =
r∑

i=1

s∑
j=1

mi (σ(k)) ωj (σ(k))
[
Ā1ijx̃ (k) + B̄1ijũ (k)

]
,

z̄ (k) =
r∑

i=1

s∑
j=1

mi (σ(k)) ωj (σ(k))
[
C̄1ijx̃ (k) + D̄1ijũ (k)

]
, (8)

where

x̃ (k) =
[

xT (k) xT
f (k) x̂T (k)

]T
, ũ (k) =

[
uT (k) wT (k) fT (k)

]T
,

Ā1ij =

 Ai 0 0
BfjCi Afj 0

0 0 Aw

 , B̄1ij =

 Bi E1i E2i

BfjDi BfjF1i BfjF2i

0 0 Bw

 , z̄ (k) = r(k) − f̄(k),

C̄1ij =
[

DfjCi Cfj −Cw

]
, D̄1ij =

[
DfjDi DfjF1i DfjF2i − Dw

]
.

To consider more information of uncertainty and facilitate stability analysis of system
(8), following the idea in [19], the state space of interest H consists of q connected sub-state
spaces Hz (z = 1, 2, . . . , q) with H = ∪q

z=1Hz. Then we divide the FOU into ς + 1 sub-
FOUs. For l = 1, 2, . . . , ς+1. Expressions of lower and upper membership functions in the

l-th sub-FOU are rewritten as hijl(σ(k)) =
q∑

z=1

2∑
i1=1

2∑
i2=1

. . .
2∑

inx=1

nx∏
τ=1

υτiτ zl (στ (k)) ϑiji1i2...inzl,

hijl(σ(k)) =
q∑

z=1

2∑
i1=1

2∑
i2=1

. . .
2∑

inx=1

nx∏
τ=1

υτiτ zl (στ (k)) ϑiji1i2...inzl, where 0 ≤ hijl(σ(k)) ≤

hijl(σ(k)) ≤ 1, ϑiji1i2...inzl ≤ ϑiji1i2...inzl. ϑiji1i2...inzl and ϑiji1i2...inzl are constant scalars
to be determined; 0 ≤ υτiszl(xτ (k)) ≤ 1 with the property υτ1zl (στ (k)) + υτ2zl (στ (k)) = 1
for τ , s = 1, 2, . . . , nx; l = 1, 2, . . . , ς + 1; iτ = 1, 2; x(k) ∈ Hz; and υτiszl (στ (k)) = 0 if

otherwise. Thus,
q∑

z=1

2∑
i1=1

2∑
i2=1

. . .
2∑

inx=1

nx∏
τ=1

υτiτ zl (στ (k)) = 1 for all l is achieved, which is

used to analyze the system stability. For simplisity, the variable σ(k) is omitted.
Then, system (8) can be rewritten as follows:

x̃ (k + 1) =
r∑

i=1

s∑
j=1

hij

[
Ā1ijx̃ (k) + B̄1ijũ (k)

]
,

z̄ (k) =
r∑

i=1

s∑
j=1

hij

[
C̄1ijx̃ (k) + D̄1ijũ (k)

]
, (9)

where

hij = miωj =
ς+1∑
l=1

ρijl

(
ζ

ijl
hijl + ζ ijlhijl

)
,

ρijl =

{
1, hijl ∈ sub-FOU l,
0, else,

r∑
i=1

s∑
j=1

hij = 1, 0 ≤ ζ
ijl

≤ ζ ijl ≤ 1,

where the functions ζ
ijl

and ζ ijl are not required to be known. ζ
ijl

+ ζ ijl = 1 for i, j and

l.
The purpose of the paper is to design a FDF on the basis of IT-2 framework such that

the following conditions are satisfied simultaneously.
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1) The residual system in (9) is asymptotically stable;
2) Under zero initial condition, with a given positive scalar γ, the inequality√∑∞

k=0 z̄T (k) z̄ (k) ≤ γ

∥∥∥∥√∑∞
k=0 ũ (k)T ũ (k)

∥∥∥∥
2

should be satisfied.

3. Main Results. In this section, for given FDF gain matrices Afj, Bfj, Cfj, Dfj

(j = 1, 2, . . . , s), the sufficient criteria are given to ensure residual system (9) to be
asymptotically stable and satisfy the predefined H∞ performance.

Theorem 3.1. Considering fuzzy system in (9), for a positive scalar γ, system in (9)
is asymptotically stable and satisfies a given disturbance attenuation index, if there exist
symmetric matrices H1 > 0, V > 0, W̄ > 0, W̄ijl > 0, and matrices Āfj, B̄fj, C̄fj, D̄fj,
M̄ , where

W̄ijl =


W̄1ijl W̄2ijl · · · W̄6ijl

∗ W̄7ijl · · · W̄11ijl

∗ ∗ . . .
...

∗ ∗ ∗ W̄21ijl

 , M̄ =


M̄1 M̄2 · · · M̄6

∗ M̄7 · · · M̄11

∗ ∗ . . .
...

∗ ∗ ∗ M̄21

 ,

satisfying the following conditions:[
P̂ ϖΠ̆ij

∗ Φ̃ijl

]
< 0,

[
P̂ Π̆ij

∗ Ω̃

]
< 0, (10)

where

Π̆ij =


∆1ij Āfj 0 ∆3ij ∆4ij ∆5ij

∆2ij Āfj 0 ∆6ij ∆7ij ∆8ij

0 0 V Aw 0 0 V Bw

D̄fjCi C̄fj −Cw D̄fjDi D̄fjF1i D̄fjF2i − Dw

 ,

Q =

 −H1 −W̄ 0
∗ −W̄ 0
∗ ∗ −V

 ,

Φ̃ijl =


Φ̄1ijl Φ̄2ijl · · · Φ̄6ijl

∗ Φ̄7ijl · · · Φ̄11ijl

∗ ∗ . . .
...

∗ ∗ ∗ Φ̄21ijl

 , Ω̃ =


Ω̄1 Ω̄2 · · · Ω̄6

∗ Ω̄7 · · · Ω̄11

∗ ∗ . . .
...

∗ ∗ ∗ Ω̄21

 ,

P̂ = diag{Q,−I}, ∆1ij = H1Ai + B̄fjCi, ∆2ij = W̄ T Ai + B̄fjCi,

∆3ij = H1Bi + B̄fjDi, ∆4ij = H1E1i + B̄fjF1i, ∆5ij = H1E2i + B̄fjF2i,

∆6ij = W̄ T Bi + B̄fjDi, ∆7ij = W̄ T E1i + B̄fjF1i, ∆8ij = W̄ T E2i + B̄fjF2i,

Φ̄1ijl = −ϑiji1i2...inzlH1 −
(
ϑiji1i2...inzl − ϑiji1i2...inzl

)
W̄1ijl +

(
ϑiji1i2...inzl −

1

rs

)
M̄1,

Φ̄ι0ijl = −ϑiji1i2...inzlW̄ −
(
ϑiji1i2...inzl − ϑiji1i2...inzl

)
W̄ι0ijl

+

(
ϑiji1i2...inzl −

1

rs

)
M̄ι0 , ι0 = 2, 7,

Φ̄ι1ijl = −
(
ϑiji1i2...inzl − ϑiji1i2...inzl

)
W̄ι1ijl

+

(
ϑiji1i2...inzl −

1

rs

)
M̄ι1 , ι1 = 8, . . . , 11,

Φ̄12ijl = −ϑiji1i2...inzlV −
(
ϑiji1i2...inzl − ϑiji1i2...inzl

)
W̄12ijl +

(
ϑiji1i2...inzl −

1

rs

)
M̄12,
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Φ̄ι2ijl = −
(
ϑiji1i2...inzl − ϑiji1i2...inzl

)
W̄ι2ijl

+

(
ϑiji1i2...inzl −

1

rs

)
M̄ι2 , ι2 = 3, . . . , 6, 13, 14, 15, 17, 18, 20,

Φ̄ι3ijl = −ϑiji1i2...inzlγ
2I −

(
ϑiji1i2...inzl − ϑiji1i2...inzl

)
W̄ι3ijl

+

(
ϑiji1i2...inzl −

1

rs

)
M̄ι3 , ι3 = 16, 19, 21,

Ω̄1 = −H1 − W̄1ijl + M̄1, Ω̄2 = −W̄ − W̄2ijl + M̄2, Ω̄7 = −W̄ − W̄7ijl + M̄7,

Ω̄ι4 = −W̄ι4ijl + M̄ι4 , ι4 = 3, . . . , 6, 13, 14, 15, 17, 18, 20,

Ω̄ι5 = −W̄ι5ijl + M̄ι4 , ι5 = 8, 9, 10, 11, Ω̄12 = −V − W̄12ijl + M̄12,

Ω̄ι6 = −γ2I − W̄ι6ijl + M̄ι5 , ι6 = 16, 19, 21.

Furthermore, if the aforementioned conditions hold, the FDF gain matrices in the form

of (5) can be computed by

[
Afj Bfj

Cfj Dfj

]
=

[
W̄−1 0

0 I

] [
Āfj B̄fj

C̄fj D̄fj

]
.

4. Numerical Example. Consider the tunnel diode circuit governed by the dynamic
equation: iD(k) = 0.002vD(k) + ∂v3

D(k), where ∂ is an uncertain parameter and ∂ ∈
[0.01, 0.03].

Define x1(k) = vC(k), x2(k) = iL(k) and f̄ = 0.002 + ∂v2
D(k). Then, one can get

Cx1(k) = −f̄x1(k) + x2(k),

Lx2(k) = −x1(k) − Rx2(k) + w(k),

where C = 20 mF, L = 1000 mH and R = 10 Ω.
For demonstration, the external disturbance and fault are given as:

w(k) =

{
rand[0, 1], 20 < k < 70,
0, else,

, f(k) =

{
1, 30 < k < 60,
0, else,

Referring to the modeling process in [18] and computing the LMIs (10) with γ = 1.05,
the effectiveness of Theorem 3.1 can be validated.

Figure 1 and Figure 2 show the fault detection without the disturbance and fault
detection with the disturbance, respectively. From these figures, we can see that the
designed FDF can distinguish the fault signal from the disturbance.

Figure 1. Fault detection without input u(k) and disturbance w(k)
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Figure 2. Fault detection with disturbance w(k)

5. Conclusions. In this paper, the problem of filter-based fault detection for a cate-
gory of nonlinear systems subject to uncertainties has been studied. By using the IT2
T-S fuzzy model, the uncertain systems have been modeled and uncertainties have been
captured and expressed through lower and upper membership functions. Employing in-
dependent premise variables, membership functions and number of fuzzy rules, the IT2
FDF designed in this paper increases the design flexibility. The footprint of uncertainty
has been considered for more uncertain information and less conservative results. Based
on these techniques, sufficient conditions have been derived to design the desired IT2
FDF and ensure the residual system is asymptotically stable and satisfies disturbance
attenuation performance. Finally, simulation results have been provided to demonstrate
the effectiveness of the methodology proposed in this paper. In future work, time delay
will be considered to handle fault detection problem based on the IT2 T-S fuzzy model.
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