
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 7, July 2016 pp. 1683–1689

IN-RANK: AN ENTROPY-BASED INFORMATIVE NODES MINING
METHOD IN COMPLEX SOFTWARE NETWORK

Jiadong Ren1,2, Yanling Li1,2,∗, Hongfei Wu1,2

Yang Liu1,2 and Peng Zhang1,2

1College of Information Science and Engineering
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province

Yanshan University
No. 438, Hebei Avenue, Qinhuangdao 066004, P. R. China

jdren@ysu.edu.cn; ∗Corresponding author: wintersmiles@163.com

Received December 2015; accepted March 2016

Abstract. It is a fundamental issue to find a small subset of influential individuals in a
complex network such that they can spread information to the largest scope of nodes in the
network. Informative functions in complex software network can lead maximum informa-
tion propagation scope, and mining such function nodes is important to understand the
system’s topology structure and information transfer flows. In this paper, a novel top-
k informative nodes mining approach based on global information in directed-weighted
complex software network is proposed. Firstly, we map functions and call relationships
between them as a Directed-Weighted Function Call Network (DWFCN). Secondly, an
algorithm path-compute based on Software Executing Path Sequence (SEPS) generated
by Depth-First-Search strategy is used to compute the software executing paths and get
nodes’ information Accessible Set (AS). Thirdly, algorithm Entropy-Compute is proposed
to calculate each source node’s information entropy in each information transfer flow pro-
cess. Finally, an Informative Node Rank (IN-Rank) algorithm is put forward to mine
most informative nodes. Experimental results show that our new method is accurate and
effective.
Keywords: Software network, Path sequences, Information entropy, Influential nodes

1. Introduction. Node’s importance analysis now is a hot topic in complex networks.
Identifying the most influential “spreaders” in a network is an important step to optimize
the use of available resources and ensure the more efficient spread of information [1].
Software network as a kind of complex system displays lots of complex characteristics,
if failure or malicious attack occurs in influential nodes, cascading failure will be caused
in software systems, which brings about rebellious security issues, so mining influential
functions is important for software system’s structural analysis and regular maintenance.

Different measures of node’s importance were proposed in recent years. Freeman [2]
argued that degree centrality indexes the node’s activity; betweenness centrality exhibits
the node’s potential for network control and closeness centrality reflects its communication
independence or efficiency. Method of degree centrality is simple, but it lacks relevance.
Although betweenness centrality and closeness centrality can effectively identify influen-
tial nodes, they are incapable of being applied in large-scale networks due to the high
computational complexity. Borgatti [3] conceptualized a typology of centrality measure
based on ways that traffic flows through the network, this method considers the global
information and performs well, and it is suitable for traffic network but not software
network. Li et al. [4] introduced a weighted software network model to represent the
structure of object-oriented software and defined an indicator IC to measure the impor-
tance of nodes. It needs to get the Extra-Class method reachable set, and this process is
excessively time-consuming. Bhattacharya et al. [5] defined a measure called NodeRank

1683

1684 J. REN, Y. LI, H. WU, Y. LIU AND P. ZHANG

that assigns a numerical weight to each node in a graph, to measure relative importance
of node in software, but they did not consider function call into account. He et al. [6] pro-
posed two new measures NMS and RNMS to efficiently evaluate function’s importance,
but they all need to adjust parameters.

Because paths from a particular node to its destination nodes can be built as sequences,
some sequence mining methods were proposed to analyze node’s centrality. Tutzauer [7]
proposed an entropy-based centrality measure for traffic which propagates by transfer
flows along path sequences, this method is classically efficient, but its looped graph model
does not work well in software network which is hardly with any loops. Nikolaev et al.
[8] developed the idea of Tutzauer, and presented a new, high-utility entropy centrality
measure based on a discrete Markovian transfer process in local paths, which is well
performed in social network.

Unlike mentioned above, our paper defines the information of network in a different
way and widens the application of information entropy into software network. As failure
of functions may spread to other functions and causes unmanageable fault in software
network, important functions have greater probability to travel fault far in multiple po-
tential directions, namely, have a larger entropy value. We first quantify function calls
in software as information transfer process and propose a novel method to measure im-
portance of functions based on information entropy in software network. After extracting
function calls as path sequences, we calculate each source node’s accessible set, and then
algorithm Entropy-Compute and IN-Rank are used to get informative nodes.

The remaining paper is organized as follows. Section 2 gives some basic definitions. De-
tailed description of our approach and related algorithms are given in Section 3. Experi-
ments in Section 4 show algorithm performances on two open-source software. Conclusion
and future work are mentioned in Section 5.

2. Preliminaries. In a software system, collaborations and calling relationships along
paths reflect the system’s control flow, and informative functions can be found by analyz-
ing the control flow. In order to accurately measure node’s influential degree in spreading
information, we propose a model to construct software directed-weighted function call
network. First we give some basic definitions in the following.

Definition 2.1. DWFCN (Directed-Weighted Function Call Network). A DWFCN is
defined as DWFCN = (V, E, W). Nodes set V represents functions and directed edges
set E represents call relationships between functions, edge < u, v > means function u calls
function v. W is the corresponding weights set of E, where wu,v = auv

kout
u

is probability that

a random call at function u goes to v, auv = 1 if node u points to v, otherwise, auv = 0,
kout

u denotes the out-degree of u.

Definition 2.2. SEPS (Software Executing Path Sequence). A software executing path
sequence is a list of functions denoted as < f1 → f2 → . . . → fn−1 → fn >, in which
fn ∈ V , fn is an available node of f1 from sub-path < f2 → . . . → fn−1 >.

Definition 2.3. AS (Accessible Set). Accessible set is the set of all path-reachable nodes
traversed along SEPSs or sub-path of SEPSs from a specific source node.

Definition 2.4. INTP (Information Transfer Probability). Suppose call relationship a →
b → c, if a calls b with probability pab, b calls c with probability pbc, information flows from
a to c will be with probability pac = pab × pbc.

Information Transfer Probability from source node d to destination node s is defined as
follows

INTPsd =
n∑

p=1

Intpsd (1)

ICIC EXPRESS LETTERS, VOL.10, NO.7, 2016 1685

where n is count of different connected paths from d to s, Intpsd =
∏

<i,j>∈E(SEPS)

wi,j is

Information Transfer Probability on one path from d to s, and E (SEPS) represents all
edges in a SEPS.

Example 2.1. Figure 1 shows a simple DWFCN, AS(c) = {d, e, f}, from path sequences
{c → d, c → e → d}, {c → e}, {c → d → f, c → e → f, c → e → d → f} respectively.
We can get INTPcd = wcd + wce × wed = 3/4, INTPce = wc,e = 1/2, INTPcf =
wc,d × wd,f + wc,e × we,f + wc,e × we,d × wd,f = 1.

a

cb e

f

1/3 1/3
1/3

1/2

1/2

1

1/2 1/2

1/2d

1/2

Figure 1. A simple DWFCN

Definition 2.5. IESN (Information Entropy of Source Node) A node’s information en-
tropy is defined as follows

IESN(i) = −
n∑

j=1

Pij log(Pij) (2)

where n = |AS(i)|, Pij is the proportion of i’s total INTP volume that points to j, namely

Pij =
INTPij

n∑
j=1

INTPij

(3)

Definition 2.6. IN (Informative Node) Function node i is an informative node if
IESN(i) ≥ p, p is a user-defined threshold.

Informative Node has a larger ability of diffusing information than nodes with a lower
IESN.

3. IN-Rank: Mining Informative Nodes in Directed-Weighted Software Net-
work. Firstly, functions and relationships between them will be extracted from software
source code, and then we map them as DWFCN. Secondly, algorithm Path-Compute
based on path sequences obtained by Depth-First-Search (DFS) is used to get AS of each
node. Thirdly, algorithm Entropy-Compute is proposed to obtain every source node’s
information entropy. At last, informative nodes will be mined by IN-Rank.

1686 J. REN, Y. LI, H. WU, Y. LIU AND P. ZHANG

Algorithm 1 Path-Compute

Input: Directed-Weighted Function Call Network (DWFCN)
Output: F(i → j, INTPij)//j ∈ AS(i), INTPij is the probability that i’s information spreads

to j
1: call Algorithm 2 to get SEPS-DB
2: for each path in SEPS-DB
3: initialize node i=parh.firstNode, temp=1.0, tempSource=i, seps=i, INTPij=0.0
4: for (i.next!=null)
5: j=i.next;
6: seps=seps+j;
7: if (seps has not been computed)
8: INTPij+=wtempSource,j*temp temp=wtempSource,j*temp
9: end if

10: tempSource=j; j=j.next
11: end for
12: GetFunction(path-i)
13: end for
14: return F (i → j, INTPij)

Algorithm 2 GetSEPS-DB

Input: Directed-Weighted Function Call Network (DWFCN)
Output: SEPS-DB
1: initialize SEPS=rootnode
2: if (rootnode.child is not null) then
3: for each child in set of rootnode.children
4: SEPS=SEPS+child
5: GetSEPS-DB(child)
6: end for
7: else
8: SEPS-DB.add(SEPS)
9: end if

10: return SEPS-DB

Algorithm Path-Compute firstly calls GetSEPS-DB to get all SEPS (line 1). Then each
path is computed to get every node’s accessible destination node and corresponding INTP
value recursively (line 2-line 13), and function F(i → j, INTPij) is obtained to keep this
result (line 14). Algorithm GetSEPS-DB generates all SEPS recursively from DWFCN
based on DFS strategy.

Algorithm 3 Entropy-Compute

Input: A node i in DWFCN
Output: IESN(i)
1: initialize IESN(i)=0.0
2: for each node j in F (i → j, INTPij)
3: calculate Pij=

INTPij

|F |∑
j=1

INTPij

//calculate Pij , make it meet the Entropy calculation conditions

4: calculate information I=−Pij log Pij

5: IESN(i)=IESN(i)+I
6: end for
7: return IESN(i)

Algorithm Entropy-Compute reveals how the information entropy of a source node is
calculated (line 1-line 5) based on Formulas (2) and (3).

ICIC EXPRESS LETTERS, VOL.10, NO.7, 2016 1687

Algorithm 4 Informative Node Rank (IN-Rank)

Input: Directed-Weighted Function Call Network (DWFCN)
Output: A sorted list storing the nodes’ informative entropy
1: Path-Compute
2: for each node i F(i → j, INTPij)
3: temp=Entropy-Compute(i)
4: insert (i, temp) to list L
5: end for
6: sort list L in descending order
7: return L

Example 3.1. Taking Figure 1 for example, in the DWFCN, AS(c) = {d, e, f}, according
to Algorithm 1, we can get F(c→d) = 3/4, F(c→e) = 1/2, F(c→f) = 1. Then according
to Formula (3), Pcd = 1/3, Pce = 2/9, Pcf = 4/9, IESN (c) = 0.460724 according to
Algorithm 3.

4. Experiment Analysis. Experiment will be tested on two open-source software cflow
and tar, which are available from http://gnu.april.org/software/cflow and http://gnu.ap-
ril.org/software/tar/tar.html. We choose the latest five versions of each software. Exper-
iment is conducted on 64 bit Windows 7 ultimate, Xeon CPU E5-2603 @1.80GHz, 8G
Memory and Ubuntu14.04. We will compare our method with SN-KNN [9] and Degree.

0 5 10 15 20

2.5

3.0

3.5

4.0

in
fo

rm
at

io
n

en
tro

py

top-20 rank

 cflow-1.0
 cflow-1.1
 cflow-1.2
 cflow-1.3
 cflow-1.4

(a) Entropy rank of cflow

0 5 10 15 20
1

2

3

4

in
fo

rm
at

io
n

en
tro

py

top-20 rank

 tar-1.24
 tar-1.25
 tar-1.26
 tar-1.27
 tar-1.28

(b) Entropy rank of tar

Figure 2. Entropy rank of cflow and tar

Figure 2 shows the version tendency of source node’s information entropy of cflow and
tar. We can get some implicit information from Figure 2.

• The curves have similar variation tendency and top-k information entropy values of
different versions, which meets the fact that new version will not change too much
considering the system’s stability.

• Each new version has a slight higher entropy value than former one; it indicates that
new software’s information flow is a little more active.

• More attention should be paid on functions that have a higher entropy value such
as top-10, because a higher entropy value means a higher possibility of spreading
information far.

Table 1 shows part of rank results of cflow versions and Table 2 shows part of rank
results of tar versions, and some patterns can be found.

• The rank of functions in each software version is steady with little range. In Table
1, function parse typedef’s rank ranges from 9 to 13, and function yyparse always
ranks 6.

1688 J. REN, Y. LI, H. WU, Y. LIU AND P. ZHANG

• Due to the steady rank rules, we may predict that there will not be a great rank
change of certain function nodes in the next new version. For example, in Table 2,
function dump file0 and create archive will still be the most two important nodes in
the next version, and create archive may rank NO.1.

Table 1. Rank of each cflow version by IN-Rank

function name V − 1.0 V − 1.1 V − 1.2 V − 1.3 V − 1.4
main 1 1 1 1 1
func body 2 2 2 4 3
maybe parmlist 3 3 3 2 2
parse dcl 4 4 4 3 4
parse variable declaration 5 5 5 5 5
yyparse 6 6 6 6 6
expression 7 7 7 7 7
dcl 8 8 8 9 10
parse typedef 9 12 12 12 13
fake struct 10 9 9 10 9

Table 2. Rank of each tar version by IN-Rank

function name V − 1.24 V − 1.25 V − 1.26 V − 1.27 V − 1.28
dump file0 1 1 1 2 2
create archive 2 2 2 1 1
dump dir0 3 3 3 3 3
main 4 4 4 3 4
dump regular file 5 5 5 5 5
dump hard link 6 6 6 6 6
start header 7 7 7 8 8
dump file 8 8 8 7 7
open archive 9 9 9 9 9

dump dir 10 10 10 10 11

Table 3. Top 15 informative functions of tar-1.28

function name IN -Rank SN -KNN Degree
create archive 1 3 3
dump file0 2 4 1
dump dir0 3 6 5
main 4 1 6
dump regular file 5 7 4
dump hardlink 6 8 7
dump file 7 2 12
start header 8 10 2
open archive 9 9 8

close archive 10 18 9
dump dir 11 5 13
write header name 12 12 24
open archive 13 9 8
write eot 14 26 14
write short name 15 19 21

ICIC EXPRESS LETTERS, VOL.10, NO.7, 2016 1689

We compare top-15 functions in our method (IN-Rank) with SN-KNN and Degree using
tar-1.28 in Table 3. We can find some information in the following.

• Results of IN-Rank and SN-KNN are 80% similar because they both take out-degree
into account, but SN-KNN is a semi-global method only considering node’s neighbor
and neighbor’s neighbor, so function dump file ranks 2 in SN-KNN just ranks 7 in
IN-Rank, because the transfer path from dump file stops after moving two steps.

• There is no correlation between the importance rank and the out-degree of a function
node. For example, in Table 3, function start header has a very high out-degree but
lower ability of spreading information than dump file with a lower degree.

5. Conclusions and Future Work. Although many efforts have been made to measure
node’s importance in spreading information, till now we see no researches towards defining
entropy measure that give better applicability and performance for software. In order to
accurately and globally reflect function’s information diffuse ability, this paper proposes a
novel approach with information entropy by path calculation to measure the importance
of functions in software function call network. First we map process of software calling to
Directed-Weighted Function Call Network. Functions are defined as nodes, relationships
of calls between functions are abstracted as edges, and call probability of function is set
to weight. Then path sequences are extracted to calculate each source node’s information
entropy based on processed weight. Finally, algorithm IN-Rank is proposed to mine the
most informative nodes with high ability of diffusing information. Experimental results
indicate that the proposed approach is effective. Our future work will focus on tracing
software’s dynamic execution process to find more patterns about influential nodes.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China under Grant No. 61170190, No. 61472341 and the Natural Science Foun-
dation of Hebei Province China under Grant No. F2013203324, No. F2014203152 and
No. F2015203326. The authors also gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley and H. A. Makse, Identi-
fication of influential spreaders in complex networks, Nature Physics, vol.6, pp.888-893, 2010.

[2] L. C. Freeman, Centrality in social networks: Conceptual clarification, Social Networks, vol.1, pp.215-
239, 1979.

[3] S. P. Borgatti, Centrality and network flow, Social Networks, vol.27, no.1, pp.55-71, 2005.
[4] D. Li, B. Li and W. Pan, Ranking the importance of classes via software structural analysis, Future

Communication, Computing, Control and Management, vol.141, pp.441-449, 2012.
[5] P. Bhattacharya, M. Iliofotou, I. Neamtiu and M. Faloutsos, Graph-based analysis and prediction for

software evolution, Proc. of International Conference on Software Engineering, NJ, USA, pp.419-429,
2012.

[6] H. He, J. Wang and J. Ren, Measuring the importance of functions in software execution network
based on complex network, International Journal of Innovative Computing Information and Control,
vol.11, no.2, pp.719-731, 2015.

[7] F. Tutzauer, Entropy as a measure of centrality in networks characterized by path-transfer flow,
Social Networks, vol.29, no.2, pp.249-265, 2007.

[8] A. G. Nikolaev, R. Razib and A. Kucheriya, On efficient use of entropy centrality for social network
analysis and community detection, Social Networks, vol.40, pp.154-162, 2015.

[9] J. Ren, H. Wu and T. Yin, A novel approach for mining importance nodes in directed-weighted
complex software network, Journal of Computational Information Systems, vol.11, no.8, pp.3059-
3071, 2015.

