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Abstract. In this paper, consensus problem of multi-agent systems has been considered.
Each agent is an Euler-Lagrange (EL) system with an unknown nonlinear function, which
is a nonlinear system. The sliding mode surface of the consensus problem of such multi-
agent system is designed and the stability of the augmenting error system is guaranteed
by Lyapunov theory. A controller based on Neural Networks (NN) is designed to com-
pensate the unknown nonlinear function. Combining with an adaptive control law the
consensus of multiple EL systems is reached. Finally, the simulation results illustrate
the effectiveness of the proposed approaches.
Keywords: Neural networks, Consensus, Multi-agent systems, Euler-Lagrange systems

1. Introduction. In recent years, there are many research papers on consensus prob-
lem of multi-agent systems, which have extensive applications in real engineering such as
communication networks, air traffic control, biology, robotic and electric power system.
In [1], the general problems of state estimation in geographically dispersed systems with
communication constraints are studied. [2] studied the consensus problem of multi-agent
systems with a time-invariant communication topology consisting of general linear dy-
namics. The multi-agent system with a communication channel constraint is considered
by providing a special Laplacian of directed graphs in [3]. A notion of reachable asymp-
totic consensus of a network with multiple nonlinear agents is developed in [4] and the
asymptotic consensus protocol of multiple dynamic agents is presented. [5] is concerned
with the distributed containment control problem for networked Lagrangian systems with
multiple stationary or dynamic leaders in the presence of parametric uncertainties under
a directed graph that characterizes the interaction among the leaders and the followers.
In [6,7], the state consensus for non-point, nonlinear networked Euler-Lagrange systems
with unknown parameters is addressed. Specifically, state consensus problems with both
coupling time delay and a switching topology are investigated. [8] presents a consensus
regional approach to design distributed consensus protocols for multi-agent systems with
general continuous-time linear node dynamics.

On another research line, Neural Networks (NN) approximators are designed for adap-
tive H∞ formation control of multi-agent systems composed of EL systems [9]. Robust
Integral of the Sign of the Error (RISE) is adopted to achieve modularity in the con-
troller/update law for a general class of EL systems [10]. However, it is in the absence of
the effective methods to eliminate disturbances and uncertainties in the system.

In this paper, the consensus problem of multi-agent systems composed of EL systems
based on neural networks is studied. The graph theory is utilized to model the com-
munication topology between agents. Each agent is the nonlinear dynamic model with
disturbances and uncertainties, which is an unknown nonlinear function. Combining with
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the adaptive control scheme, an artificial neural network with online learning weights
developed in [11] is used for overcoming both the unknown nonlinear function and the
drawbacks of the traditional sliding mode control. At last, the consensus of such systems
is reached.

The rest of this paper is organized as follows. In Section 2, the consensus problem of
the EL systems with the unknown nonlinear function is formulated. The consensus is
reached by the Lyapunov theory and adaptive control scheme in Section 3. Numerical
simulation of multi-agent systems is provided to show the effectiveness of the proposed
approaches in Section 4. Finally, the major conclusions of the paper are summarized in
Section 5.

2. Problem Formulation and Preliminaries. In this section, the multiple Euler-
Lagrange systems are described as a kind of multi-agent systems, which are nonlinear.
After introducing the background knowledge of such system, the consensus problem is
formulated.

2.1. Background on the dynamic of Euler-Lagrange systems. A kinematic equa-
tion of the robot manipulator with n degree of freedom (DOF) is represented by the
following Euler-Lagrange systems:

D(q)q̈ + C(q, q̇)q̇ +G(q) + Frq̇ + τd = τ (1)

where q, q̇, q̈ ∈ Rn denote the link position, velocity, and acceleration vectors, respectively.
D(q) ∈ Rn×n denotes a positive definite and symmetric matrix. τd ∈ Rn denotes a
general nonlinear disturbance. τ ∈ Rn represents the torque input control vector. G(q) ∈
Rn is the gravity vector. C(q, q̇)q̇ ∈ Rn denotes the centripetal-Coriolis. Fr(q̇) ∈ Rn

denotes friction. The characteristic of the kinematic model robot consists of the following
properties:

• Property 1: There exits a vector α ∈ Rn with elements dependent on the variable of
manipulator as weight, internal torque such that

D(q)q̈ + C(q, q̇)q̇ +G(q) + Frq̇ + τd = ψ(q, q̇, q̈)α (2)

with ψ ∈ Rn×m as a regression matrix.
This characteristic means that the kinematic model of the manipulator could be

linearized if these parameters are chosen appropriately.
• Property 2: Both C(q, q̇) and D(q) satisfy

sT
(
Ḋ − 2C

)
s = 0, ∀s ∈ Rn (3)

The matrix
(
Ḋ − 2C

)
is a symmetric matrix. This characteristic guarantees the

system not to be affected by the force that is defined by C (q, q̇) q̇. It is used to
analyze the stability of such system.

• Property 3: The friction in (3) is defined as

Fr (q̇) = Fv q̇ + Fd (q̇) (4)

where Fv is a friction coefficient matrix and Fd (q̇) denotes the kinetic friction. Be-
cause the local friction error disconnects between links, it only depends on the angular
velocity q̇. This characteristic is used to reduce the number of parameters in the NN
compensator.
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2.2. Graph theory and the Laplacian matrix. A graph theory is used to represent
the communication relationship between each agent, which is called the communication
graph. If the number of agents ism, the graph G consists of a node set γ = {ν1, ν2, . . ., νm},
an edge set ς ⊆ γ × γ and a weighted adjacent matrix A = [δi,j] ∈ Rm×m, where δi,j > 0
means that agent i can obtain the information from agent j, otherwise δi,j = 0. The
adjacent matrix A is a symmetric matrix and defined as δi,j = δj,i. Associated with A,
the Laplacian matrix is introduced by L = [lij] ∈ Rm×m, where [ljj] =

∑m
j=1,j ̸=i δij and

lij = δi,j, i ̸= j.
We define a finite set including h communication graphs G∗ = {G1, G2, . . . , Gh} such

that all h communication graphs have the same node set, i.e., γ1 = γ2 = . . . = γh = γ.
However, the edge set for each h communication graphs is different, i.e., ς1 ̸= ς2 ̸= . . . ̸= ςh,
which results in a different weighted adjacent matrix for each communication graphs,
specifically, A1 ̸= A2 ̸= . . . ̸= Ah. Consequently, the Laplacian matrix associated with
each i ∈ {1, 2, . . ., h} communication graphs, denoted by Li, will also be different. It
should be noted that all the h communication graphs are connected; therefore, Li is a
positive semi-definite matrix ∀i ∈ {1, 2, . . ., h}.

3. Stability Analysis. In general, the parameters of neural networks are fixed after
learning, which implies that it is incapable of adapting. In addition, there are a lot
of parameters with structural uncertainty. Therefore, it is necessary to add adaptive
properties in Neural Networks.

Consider a simple Multiple Input Multiple Output (MIMO) NN structure consisting of
two layers as Figure 1.

Figure 1. A two-layer MIMO NN structure

The MIMO NN structure in Figure 1 is described by

yj =

p∑
l=1

wjpζl(x) = ΘT
j ζ(x) = N̂ (qi, q̇i, q̈i|Θ) , j = 1, 2, . . .,m (5)

where ζ(x) = {ζ1(x), ζ2(x), . . . , ζp(x)}T ∈ Rp, Θj = [wj1, wj2, . . . , wjp]
T and

N̂ (qi, q̇i, q̈i|Θ) =
[
ΘT

1 ζ(qi, q̇i, q̈i),Θ
T
2 ζ(qi, q̇i, q̈i), . . . ,Θ

T
nζ(qi, q̇i, q̈i)

]T
Equation (1) could be rewritten as

τ = τ0 + F (q, q̇) = τ0 + F (s) (6)

where τ0 = D(q)q̈ + C (q, q̇) q̇ +G(q) and

F (q, q̇) = F (s) = Frq̇ + τd (7)

The unknown function F (s) is the main reason to degrade the control performance.
By compensating this, the control performance could be improved. Hence, we choose an
artificial neuron network (5) with a limited number of neurons that can approximate an
unknown nonlinear function with a given accuracy as follows.

F (s) = ΘT
j ζ(x) (8)

Then, the key problem is how to find the control torque τ and a learning algorithm of
wj,p in (5), which will be given in the following theorem.
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Theorem 3.1. Consider Euler-Lagrange system (1) with the unknown function (7) and
the parameter vector wj,p in (5), then the designed sliding mode surface s = ė + Λe with
e = q − qd combined with neural network (5) will guarantee the asymptotic consensus of
multi-agent system (1).

Proof: Given s = ė+Λe, we have ė = −Λe with s = 0. Then, q̇r(t) = q̇d(t)−Λe(t). In
order to design the control law using NN with adaptive schemes, we define a Lyapunov
function as follows

V (t) =
1

2

(
sTDs+

n∑
j=1

Θ̃T
j ΓjΘ̃j

)
where Θ̃j = Θ∗

j − Θj, Θ∗
j as the column vector j of optimal matrix Θ∗ and Γj > 0.

Because D is the inertia matrix of the manipulator that is symmetric positive definite,
we have V (t) > 0 for all

(
sT ,ΘT

)
̸= 0 and V (t) = 0 if and only if (sT ,ΘT ) = 0. V (t) also

satisfies other conditions such as V (t) → ∞ when s → ∞, Θj → ∞. If we can identify

the control torque τ to ensure V̇ (t) < 0, then s → 0 and the system will approach and
stay the sliding surface.

Now, a control law is developed as follows

τ = D(q)q̈r + C (q, q̇) q̇r +G(q) + N̂ (q, q̇, q̈|Θ) −KDs (9)

with KD = diag{Kj} > 0, j = 1, 2, . . . , n which is the designed parameters.
The time derivative of V (t) is

V̇ (t) =
1

2

[
ṡTDs+ sT Ḋs+ sTDṡ+

n∑
j=1

(
Θ̇T

j ΓjΘj + ΘT
j ΓjΘ̇j

)]

=
1

2
sT Ḋs+ sTDṡ+

n∑
i=1

ΘT
j ΓjΘ̇j

(10)

Because the matrix
(
Ḋ − 2C

)
in (3) is a symmetric matrix, we have sT Ḋs = sT 2Cs.

Substituting the above equation to (10) yields

V̇ (t) = sTCs+ sTDṡ+
n∑

j=1

ΘT
j ΓjΘ̇j = sT (Cs+Dṡ) +

n∑
j=1

ΘT
j ΓjΘ̇j (11)

In addition, we have

Cs+Dṡ =C(ė+ Λe) +D (ë+ Λė)

=C (q̇ − q̇d + Λe) +D (q̈ − q̈d + Λė)

=C (−q̇d + Λe) +D (−q̈d + Λė) + Cq̇ +Dq̈

(12)

According to (1) and (6), we have

Dq̈ + Cq̇ = τ −G− F (s) (13)

Replacing (12) and (13) into (11) leads to

V̇ (t) = sT [C(−q̇d + Λe) +D (−q̈d + Λė) + τ −G− F (s)] +
n∑

j=1

ΘT
j ΓjΘ̇j (14)

Since Θ∗ can be determined from the NN, the smallest error vector is approximated

wi = F (s) − N̂ (qi, q̇i, q̈i|Θ) (15)

Replacing q̇r = q̇d − Λe yields

V̇ (t) = −sT (Dq̈r + Cq̇r +G+ F (s) − τ) +
n∑

j=1

Θ̃T
j Γj

˙̃Θj (16)
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By substituting (9) to (16), it is obtained that

V̇ (t) = −sTKDs− sTwi +
m∑

j=1

[
Θ̃T

j Γj
˙̃Θj − sjΘ̃

T
j ζ(qi, q̇i, q̈i)

]
(17)

By designing the following adaptive control law

Θ̇j = −Γ−1
j sjζ (qi, q̇i, q̈i) , j = 1, 2, . . . , n (18)

we have V̇ (t) = −sTKDs. From (9), we can see that V̇ (t) < 0 for all s ̸= 0. So,
according to the Lyapunov stability theorem, the agent can track the desired trajectory
qd. Therefore, the state trajectories can reach the sliding surface s = 0 in the limited time
such that the consensus of multiple EL systems can be reached.

4. Numerical Simulations.

4.1. Nonlinear dynamics of Euler-Lagrange systems. We consider 2 degrees of
freedom robot, which moves in the vertical plane. The joint angles are denoted by ϕ1 and
ϕ2. Using the Newton-Euler recursive method, the torques for each joint are calculated
as follows

τ1 =m2l
2
2

(
ϕ̈1 + ϕ̈2

)
+m2l1l2c2

(
2ϕ̈1 + ϕ̈2

)
+ (m1 +m2)l

2
1ϕ̈1 −m2l1l2s2ϕ̇

2
2

− 2m2l1l2s2ϕ̇1ϕ̇2 +m2l1l2gc12 + (m1 +m2)l1gc1

(19)

τ2 = m2l1l2c2ϕ̈1 +m2l1l2s2ϕ̇
2
1 +m2l2gc12 +m2l

2
2

(
ϕ̈1 + ϕ̈2

)
(20)

where c1 = cos(ϕ1), c12 = cos (ϕ1 + ϕ2).
Based on (19) and (20), the dynamic equation of multi-agent systems is represented by

Euler-Lagrange system which is described as follows[
τ1
τ2

]
=

[
D11 D12

D21 D22

] [
ϕ̈1

ϕ̈2

]
+

[
C1

C2

]
+

[
g1(ϕ1, ϕ2)
g2(ϕ1, ϕ2)

]
(21)

where

D11(ϕ2) = (m1 +m2)l
2
1 +m2l

2
2 + 2m2l1l2c2 D12(ϕ2) = D21(ϕ2) = m2l

2
2 +m2l1l2c2

D22(ϕ2) = m2l
2
2 g1(ϕ1, ϕ2) = (m1 +m2)gl1c1 +m2gl2c12

C1 = −m2l1l2ϕ̇
2
2s2 − 2m2l1l2ϕ̇1ϕ̇2s2 C2 = m2l1l2ϕ̇

2
1s2 g2(ϕ1, ϕ2) = m2gl2c12

(22)

m1, l1, m2, and l2 denote the masses and lengths of two links, respectively. Dij, Ci, gi

and τi are the matrix and dynamic torque defined in (1).
From Equation (21) we can have[
ϕ̈1

ϕ̈2

]
=

[
D11 D12

D21 D22

]−1(
−
[
C1

C2

]
−
[
g1(ϕ1, ϕ2)
g2(ϕ1, ϕ2)

])
+

[
D11 D12

D21 D22

]−1 [
τ1
τ2

]
(23)

Define the first joint and second joint state signals and input signals as follows:

X1 =

[
x11

x12

]
=

[
ϕ1

ϕ̇1

]
, X2 =

[
x21

x22

]
=

[
ϕ2

ϕ̇2

]
and U =

[
u1

u2

]
=

[
τ1
τ2

]
(24)

Then, the state differential equations for the first joint and second joint systems are
rewritten as

First joint: 
ẋ11 = x12

ẋ12 = a1(X) +
2∑

j=1

b1juj
(25)
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Second joint: 
ẋ21 = x22

ẋ22 = a2(X) +
2∑

j=1

b2juj
(26)

By means of (19)-(24), (25) and (26) could be rewritten as follows:
ẋ11 = x12

ẋ12 = 1
Det(D)

(−C1D22 + C2D12 − g1D22 + g2D12 + u1D22 − u2D12)

ẋ21 = x22

ẋ22 = 1
Det(D)

(C1D21 − C2D11 + g1D21 − g2D11 − u1D21 + u2D11)

(27)

where Det(D) = D11D22 − (D12)
2.

In this simulation, we select m1 = 1, l1 = 1, m2 = 1, l2 = 1 and substitute them to
(22), which yields:

D11 = 3 + 2 cos(x21) D12 = D21 = 1 + cos(x21) D22 = 1

C1 = −x2
22 sin(x21) − 2x12x22 sin(x21) C2 = x2

12 sin(x21)

g1 = 20 cos(x11) + 10 cos(x11 + x21) g2 = 10 cos(x11 + x21)

(28)

In (10), we choose KD =

[
100 0
0 100

]
and Λ =

[
5 0
0 5

]
. Assume the frictions and the

disturbances of multi-agent systems are

F (qi, q̇i, q̈i, t) = f (q, q̇) = Frq̇ + τd =

{
2 sin 15t+ 1 + 5q̇1
cos 15t+ 3q̇2

The graph G under consideration among agents is identical, which is shown in Figure
2. It is easy to verify that the assumption on the interconnection topology is satisfied.

L =


1 −1 0 0 0
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 3 −1
0 0 0 −1 1


Figure 2. Communication graph and its Laplacian matrix

4.2. Neural network implementation. Motivated by [11], the neural controller is de-
signed with 3 layers, 2 line delay input and 3 line delay feedback. The first layer contains
14 neurons by making use of the transfer function tansig, the second layer has 12 neurons
using transfer function tansig and the third layer includes 1 neuron utilizing the transfer
function purelin. TDL-1 has the three delay lines 0, 1, and 2 beats whereas TDL-2 has
the three delay lines 1, 2 and 3 beats. After the parameters are determined, we obtained
the results shown in Figures 3-5, respectively.

After training the NN system, we obtain parameters of the NN controller. Then, the
controllers are applied to the multi-agents systems with 5 agents, which communicate by
the graph shown in Figure 2, and we obtain the results shown in Figures 6-9, respectively.

5. Conclusions. This paper has studied the consensus problem of multi-agent systems.
Each agent is an EL system. A neural network controller based on the information of the
neighbor agents has been developed. Although the structure of each agent is a nonlinear
dynamic model, the consensus of multi-agent systems can be achieved by the adaptive
controller combining with the Neural Network. Simulation results have demonstrated the
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Figure 3. Reference input
and output signal of the NN
controller

Figure 4. Output plant,
MSE of plant and model

Figure 5. MSE of model output and plant

Figure 6. Response of error
of reference ϕ1d and ϕ1

Figure 7. Response of error
of reference ϕ2d and ϕ2
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Figure 8. Response of
torque on first joint of
multi-agent systems

Figure 9. Response of
torque on second joint of
multi-agent systems

stability and robustness of the closed-loop systems. Meanwhile, it has been shown that
the proposed method is effective.
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