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Abstract. This paper presents a new stabilization method for networked control sys-
tems with actuator saturation. Time delay in networked control system with actuator
saturation is considered. The stabilizing controller of the system is designed. The rela-
tionship between the time delay and the domain of attraction is also presented. Numerical
result is provided to show the effectiveness of our method.
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1. Introduction. With the development of communication and computer technology,
Networked Control Systems (NCSs) develop rapidly in the last decade. And they offer
many benefits and advantages over the traditional control systems [1, 2, 3]. However, with
the introduction of networks into control systems, NCSs also bring issues and challenges to
deal with, such as time delay, package losses, communication noise, bandwidth scheduling,
and signal quantization [4, 5]. Time delays and package losses are the most important
issues which can reduce the system performance. They have received a lot of attention
both in continuous-time and discrete-time. There are two categorized models in the
related works: one is the deterministic bound method, which places bounds on time
delays and package losses; the other one is the stochastic method, with which time delay
and package losses are molded as certain probability distributions [6]. The stabilization
problem of NCSs with time delay and package losses is presented in many papers [1].
There is some room to improve the system performance in NCSs.

In control systems, the physical actuator is subject to saturation owing to its maximum
and minimum limits. Therefore, the saturation nonlinearities are nonnegligible in NCSs.
When we design a close-loop system, the actuator saturation needs to be considered;
otherwise, the system may deteriorate, and even lose the stability. Methods for estimating
the domain of attraction are studied in [8]. The analysis and design for delta operator
system with actuator saturation are presented in [9]. In NCSs, the stabilization is studied
with actuator saturation [10]. In this reference, the estimating of the attraction domain
under a pre-designed saturated linear feedback is given. The performance is guaranteed
when the time delay is within a sampling step.
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In our paper, considering actuator saturation in NCSs with time delay is presented, we
give the estimating of the attraction domain in NCSs under actuator saturation. And
numerical simulation is also presented.

In Section 2, problem formulation is presented. In Section 3, our main result is given.
The simulation result is given in Section 4, and conclusions are drawn in Section 5.

2. Problem Formulation. Consider an NCS with actuator saturation described as fol-
lows: {

x(k + 1) = Ax(k) + Bsat(u(k − τ)), k > 0

x(s) = φ(s), s ∈ [−τ, 0]
(1)

where x(k) ∈ Rn is the plant state, u(k − τ) ∈ Rm is the control input with constant
time delay τ , and A and B are matrices appropriate dimensions. φ(s) is the initial
state in [−τ, 0]. The function “sat” is the standard saturation function of appropriate

dimension. Moreover, sat: Rm → Rm, and sat(u) = [sat(u1), sat(u2), · · · , sat(um)]T ,
where sat(ui) = sgn(ui) min{1, |ui|}. τ is the constant input time-delay of control signal
acting on the plant.

The networked controller takes the following form

u(k − τ) = Fx(k − τ) (2)

By controller (2), system (1) can be rewritten as follows:

x(k + 1) = Ax(k) + Bsat(Fx(k − τ)) (3)

where F ∈ Rm×n is the feedback gain, denote the ith row of F as fi and define

L(F ) := {x ∈ Rn : |fix| ≤ 1, i = 1, 2, · · · ,m} (4)

where L(F ) is the linear region of saturation. That is, L(F ) is the region where system
(3) is linear in x(k − τ) if F is the feedback matrix.

Definition 2.1. Given an initial state x0 = φ ∈ C1[−d, 0], denote the state trajectory of
system (3) that starts from x0 as x(k, x0) at time step k, and the domain of attraction of
the origin is given as

S :=
{

φ ∈ C1[−τ, 0] : lim
k→∞

x(k, x0) = 0
}

(5)

Since it is not possible to obtain the domain of attraction of system (3) analytically,
our objective of this paper is to obtain estimates of the domain of attraction. The main
problems considered in this paper are summarized as follows.

Considering system (3)
1) Find an estimate of the domain of attraction which is as large as possible with respect

to some given bounded and convex reference set XR ⊂ Rn.
2) Design the feedback gain F in system (3) such that an estimate of the domain of

attraction is as large as possible with respect to some given bounded and convex reference
set XR ⊂ Rn.

A set is said to be (contractively) invariant if all the trajectories starting from it will
remain in it forever (and converge to zero as k approaches infinity). For the NCS (3),
as it is time-invariant, that is, for time step k, no matter updating step or holding step,
x(k, x0) must be inside this set.

Since it is not possible to obtain the domain of attraction of system (3) analytically, our
objective of this paper is to design a state feedback controller (2) such that the closed-loop
system is asymptotically stable. And we are also interested in obtaining an estimate of
the domain of attraction Xr ⊂ S, where Xr := {φ ∈ C1[−d, 0] : max |φ| ≤ γ} with scalars
γ > 0, that will be maximized in what follows. Let D be the set of m × m diagonal
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matrices whose diagonal elements are either 1 or 0. There are 2m elements in D. Suppose
that each element of D is labeled as Di, i = 1, 2, · · · , 2m. Then

D = {Di : i ∈ [1, 2m]}

Denote D−
i = I − Di. It is obtained that D−

i is also an element of D if Di ∈ D. Given
two vectors u, v ∈ Rm, we have that{

Diu + D−
i v : i ∈ [1, 2m]

}
is the set of vectors formed by choosing some elements from u and the rest from v. Given
two matrices F,H ∈ Rm×n, it is obtained that{

DiF + D−
i H : i ∈ [1, 2m]

}
is the set of matrices formed by choosing some rows from F and the rest from H.

Before ending this section, we recall the following lemma which will be used in sequel
to drive our main results in this paper.

Lemma 2.1. Let u, v ∈ Rm, and

u =


u1

u2
...

um

 , v =


v1

v2
...

vm

 .

Suppose that |vi| ≤ 1 for all i ∈ [1,m], then

sat(u) ∈ co
{
Diu + D−

i v : i ∈ [1, 2m]
}

where co {·} is the convex hull of a group of sets. For a group of sets u1, u2, · · · , uℓ, the
convex hull of these sets is defined as

co
{
ui : i ∈ [1, ℓ]

}
:=

{
ℓ∑

i=1

αiu
i :

ℓ∑
i=1

αi = 1, αi ≥ 0

}
.

3. Main Results.

Theorem 3.1. For the closed-loop NCS with actuator saturation described as (3), given

scalars δ̂, τ (0 < τ), if there exist positive definite matrix P ∈ Rn×n, H ∈ Rm×n, Q > 0,
such that the following inequalities are feasible: −P + Q 0 AT

∗ −Q [B(Di + D−
i H)]T

∗ ∗ −P

 < 0, i = 1, 2, . . . , 2m (6)

and E(P, 1) ⊂ L(H), i.e., [
1 hi

hT
i P

]
≥ 0, i = 1, 2, . . . , m (7)

then system (3) is locally asymptotically stable. An estimate of the domain of attraction
is given by

T (γ) ≤ 1 (8)

with

T (γ) = γ2 [λmax(P ) + τλmax(Q)]
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Proof: To prove Theorem 3.1, we first show that under the conditions of this theorem,
it holds that

x0 ∈ Xr ⇒ x(k) ∈ E(P, 1), (9)

and the Lyapunov function is given as

V (k) = V1(k) + V2(k) = xT (k)Px(k) +
k−1∑

d=k−τ

xT (d)Qx(d)

where P > 0, Q > 0. Then, ∆V (k) yields

∆V (k) = ∆V1(k) + ∆V2(k) (10)

and the next we get that:

∆V1(k) = V1(k + 1) − V1(k)

= [Ax(k) + Bsat(Fx(k − τ))]T P [Ax(k) + Bsat(Fx(k − τ))] − xT (k)Px(k)

and

∆V2(k) = V2(k + 1) − V2(k)

=
k∑

d=k−τ+1

xT (d)Qx(d) −
k−1∑

d=k−τ

xT (d)Qx(d)

= xT (k)Qx(k) − xT (k − τ)Qx(k − τ)

So according to (10), ∆V (k) yields

∆V (k)

= ∆V1(k) + ∆V2(k)

= [Ax(k) + Bsat(Fx(k − τ))]T P [Ax(k) + Bsat(Fx(k − τ))] − xT (k)Px(k)

+ xT (k)Qx(k) − xT (k − τ)Qx(k − τ)

=

[
x(k)

x(k − τ)

]T [
AT[

B(DiF + D−
i H)

]T

]
P

[
AT[

B(DiF + D−
i H)

]T

]T [
x(k)

x(k − τ)

]
+

[
x(k)

x(k − τ)

]T [
−P + Q 0

0 −Q

] [
x(k)

x(k − τ)

]
≤

[
x(k)

x(k − τ)

]T ( [
AT[

B(DiF + D−
i H)

]T

]
P

[
AT[

B(DiF + D−
i H)

]T

]T

+

[
−P + Q 0

0 −Q

] )[
x(k)

x(k − τ)

]
= ηT Υiη

(11)

where η =

[
x(k)

x(k − τ)

]
and

Υi =

[
AT[

B(DiF + D−
i H)

]T

]
P

[
AT[

B(DiF + D−
i H)

]T

]T

+

[
−P + Q 0

0 −Q

]
< 0 (12)

for all i ∈ I[1,m]. If the system satisfies above (12) such as Υi < 0, and then it will be
asymptotically stable.

By the Schur complement, (12) is equivalent to −P + Q 0 AT

∗ −Q
[
B(DiF + D−

i H)
]T

∗ ∗ −P

 < 0 (13)
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Therefore, we can conclude that when inequalities (13) are feasible, we will have ∆V (k) <
0 for any x ̸= 0. And accordingly,

xT (k)Px(k) ≤ V (x(k)) < V (x0) ≤ γ2 [λmax(P ) + τλmax(Q)] = T (γ) (14)

Hence if T (γ) ≤ 1, we obtain that xT (k)Px(k) ≤ 1 and all the trajectories of x(k)
that start from T (γ) ≤ 1 will remain within E(P, 1), and thereby the control constraints
∥u(k)∥ ≤ 1. To prove x0 ∈ Xr ⇒ limtk→∞ ∥x(tk)∥ = 0, from limk→∞ V (k) = 0, we have
limk→∞ V1(k) = 0, which implies limk→∞ ∥x(k)∥2 = 0.

Summarizing the above analysis, we can conclude that limk→∞ ∥x(k, x0)∥2 = 0. Hence,
the proof is completed. From Theorem 3.1, it is seen that an optimization procedure can
be proposed to maximize the initial conditions, i.e., to obtain a maximized estimate of
domain of attraction. As the method commonly adopted in the literature, we also select
appropriate γ in (12), and an approximating optimization problem can be obtained as

min ς

s.t.


Inequalities (13)

P − ω1I ≤ 0

Q − ω2I ≤ 0

(15)

where ς = ω1 + τω2, and ωi, i = 1, 2, are the introduced variables for weighting in the
optimization procedure. Then, a maximized estimate of the domain of the attraction can
be obtained by γmax = 1/

√
Λ, where

Λ = λmax(P ) + τλmax(Q)

4. Numerical Example. We use an example of [4] to illustrate our results. The system
is described by (3) with

A =

[
0.8 0.002
0 1

]
, B =

[
0

0.3

]
, F =

[
0.005

−0.1304

]T

For the above NCS with actuator saturation, when τ = 5, according to (15), we can
get that

P =

[
1.7429 0.0009
0.0009 1.9187

]
, Q =

[
−0.0508 −0.0001
−0.0001 0.0524

]
, ω2 = −0.1619, ς = 0.1219
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Figure 1. The domain of attraction in NCS system
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When we change the constant time delay τ , the domain of attraction is changing as
Figure 1.

5. Conclusion. This paper has presented a new approach to study the NCSs with actu-
ator saturation. The stabilization condition has been given for the NCSs with time delay
under actuator saturation. The relationship between the time delay and the domain of
attraction is presented. Numerical result is included to demonstrate the effectiveness of
our proposed method.
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