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Abstract. This paper is concerned with the stabilization problem for uncertain elec-
trostatic micro-actuators. A terminal sliding mode control scheme is proposed such that
the output tracking error of electrostatic micro-actuators will converge to zero quickly.
The finite time control theory is used to ensure the reaching and sustaining of sliding
mode and stability of the controlled system. The performance of the proposed controller
is compared with the conventional backstepping controller. Finally, simulation results
show the effectiveness and robustness of the proposed method.
Keywords: Electrostatic micro-actuator, Sliding mode control, Finite time control,
Stabilization

1. Introduction. Micro Electromechanical System (MEMS) is a semiconductor tech-
nology integrating mechanism and electronics, which generally requires very precise posi-
tion control and accurate speed control [1-3]. Electrostatic micro-actuators have gained
widespread acceptance in MEMS applications, due to the simplicity of structure, ease
of fabrication, and favorable scaling of electrostatic forces into the micro domain. For
example, the parallel-plate electrostatic actuator is often used in MEMS systems such
as micro-mirrors, variable capacitors, and accelerometers. Since these systems contain
several hundred thousands of micro-actuators, robust and accurate control of the system
is of significant importance in order to achieve the required performance.

One of the main problems associated with open loop voltage control of MEMS is pull-in
instability. To overcome this problem, closed loop voltage control with position feedback
was proposed to stabilize any point in the gap [4]. Based on the use of current pulses
injecting the required amount of charge to fix the position of the movable plate, full range
of travel can be achieved without voltage penalty [5,6]. Closed-loop control is able to
provide stable and controllable deflection and many linear approaches have been tried.
For example, the advantages and disadvantages of simple open-loop and closed-loop con-
trol strategies for electrostatic comb actuators with bi-directional drive were studied in
[7], respectively. Recently, different nonlinear control techniques have been extended to
the control of electrostatic micro-actuator. In [8-10], different static and dynamic output
feedback controls were investigated and compared, such as input-output linearization,
feedback passivation, and charge feedback schemes. However, the finite time control
problem for electrostatic micro-actuator has not been discussed in these papers. Re-
cently, terminal sliding mode control (TSMC) has been developed [11-14]. Different from
conventional sliding mode control, TSMC is a finite-time control method with nonlinear
terminal sliding surface. In [13], TSMC is used for designing a finite-time control law for
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robotic manipulators, which is extended to several kinds of systems. These results provide
a basic tool for designing continuous finite-time control laws. Therefore, how to inves-
tigate the control problem of micro-actuators system under the condition of uncertainty
and modelling errors, is the behind motivation of this work.

As we all know, fuzzy control schemes have been found to be particularly useful to
model unknown functions in nonlinear systems rather that only unknown parameters.
Fuzzy logic systems (FLSs) are employed to approximate the unknown nonlinear uncer-
tain ties due to their universal approximation property, and many stable adaptive fuzzy
control design schemes have been developed using the backstepping adaptive design tech-
nique, see [15] and the references. The backstepping design method is a constructive
tool which is often used in nonlinear control [16-19]. However, the traditional backstep-
ping algorithm requires repetitive differentiations for the nonlinear components of the
model. As a consequence, many controllers are very difficult to be implemented in prac-
tice. Compared with related works, there are two main contributions that are worth to
be emphasized:

i) We propose a backstepping robust tracking control scheme to deal with the uncer-
tainties. The complexity of the designed controller is reduced and the design procedure
is much simpler than that of traditional backstepping control.

ii) Based on the terminal sliding mode control and the fuzzy control scheme, we achieve
the finite time control for uncertain electrostatic micro-actuators.

The organization of this paper is described as follows. In the next section, system model
is derived, and the assumptions are also given. In Section 3, the design of the proposed
control strategies is discussed. The simulation results are presented to demonstrate the
effectiveness of proposed control scheme in Section 4. Conclusion is presented in Section
5.

2. Problem Formulation and Preliminaries. The micro-actuator is modeled as a
parallel-plate capacitor consisting of a movable top plate and a fixed bottom plate as
shown in Figure 1. The motion equations of the micro-actuator are given by [1]:

mG̈(t) + bĠ(t) + k(G(t) −G0) = −Q
2
a(t)

2εA
. (1)

The parameters in Figure 1 are given in Table 1.
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Figure 1. Parallel-plate electrostatic actuator
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Table 1. Parameters of the micro-actuator

Parameter Definition of the parameter
m the mass of the moveable upper electrode
b the damping coefficient
k the elastic constant
Va the source internal resistance
Rs the source current
Is the applied voltage
Vs the actuation voltage
Qa the charge on the device
G the air gap
G0 the zero voltage gap
A the plate area
ε the permittivity in the gap

Vs
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Va

Ca

Ia

Is

Ip

Cp

Figure 2. The equivalent circuit with parallel parasitic capacitance

The equivalent circuit of the micro-actuator device is shown in Figure 2, in which Cp

denotes the parallel parasitic capacitance. In the presence of parasitics, the dynamic
equation of the electrical subsystem is given by

Q̇a(t) =
1

Rs(1 + ρG/G0)

{
Vs −

{
G

εA
+Rsρ

Ġ

G0

}
Qa

}
, (2)

where ρ = Cp

C0
with C0 = εA

G0
the capacitance of device at rest.

In order to make the system analysis and control design easier, (2) is normalized by

changing the time scale τ = ω0t, ω0 =
√
k/m, and we redefine some new variables as

follows [19]:

x1 = 1 − G

G0

, x2 = ẋ1, x3 =
Q2

a

Q2
pi

, u =
Vs

Vpi

, r = ω0C0Rs, ν =
b

2mω0

,

where Vpi is the pull-in voltage, Qpi is the pull-in charge. So, the systems (1) and (2) can
be rewritten as follows: 

ẋ1 = x2,
ẋ2 = 2νx2 − x1 + x3

3
,

ẋ3 = f(x) +
4
√

x3

3
β(x1)u+ d(t, x),

(3)

where x = [x1, x2, x3]
T , f(x) = −2x3(1 − x1)β(x1) + 2rρx2x3β(x1), β(x1) = 1

r[1+ρ(1−x1)]
.

Note that the state x in system (3) is defined on the state space: Ω =
{
(x1, x2, x3)|x1 ∈

[0, l], x3 > 0
}
, d(t, x) contains both parametric uncertainties and external disturbance.
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Also, we let the system output y = x1. Besides, the following assumptions and lemmas
are valid throughout this paper:

Assumption 2.1. x1, x2 and x3 are all measurable and bounded.

Assumption 2.2. The reference trajectory x1d and its n-order derivatives is known and
bounded, n = 1, 2, · · · .

Assumption 2.3. d(t, x) and f(x) are assumed unknown, but bounded. Let F (t, x) =
f(x) + d(t, x) and |F (t, x)| < F̄ , F̄ is satisfied with F̄ − |F | > ε0 where ε0 > 0.

Assumption 2.4. F ∗ − F̄ = ε and |ε| < ε0, F
∗ = θ∗Tψ(x), θ∗ is the best estimated value

and ||θ∗|| ≤ α, the ψ(x) is the fuzzy basis vector (see [16]), ˆ̄F = θ̂Tψ(x) is the estimate

of F̄ , θ̂ is the adjustable parameter vectors of fuzzy system.

Lemma 2.1. [15] Assume that a continuous, positive-definite function V (t) satisfies the
following differential inequality:

V̇ (t) ≤ −cV η(t), t ≥ t0, V (t0) ≥ 0

where c > 0, 0 < η < 1 are two constants. Then, for any given t0, V (t) satisfies the
following inequality:

V (1−η)(t) ≤ V (1−η)(t0) − c(1 − η)(t− t0), t0 ≤ t ≤ t1

and V (t) ≡ 0, t ≥ t1 with t1 given by t1 = t0 + V 1−η(t0)
c(1−η)

.

Lemma 2.2. [15] For any real numbers c1 > 0, c2 > 0, 0 < η < 1, an extended Lyapunov
condition of finite-time stability can be given in the form as V̇ (x)+ c1V (x)+ c2V

η(x) ≤ 0,

where the settling time satisfies T ≤ 1
c1(1−η)

ln c1V (0)1−η+c2
c2

, V (0) is the initial value of

V (x).

Remark 2.1. Unlike [1], F (t, x) here is assumed unknown, we employ fuzzy systems to
estimate the upper boundary F̄ .

3. Main Results. Let e1 = x1 − x1d and e2 = x2 − ẋ1d, system (3) can be described as
ė1 = e2,
ė2 = 2ν(e2 + ẋ1d) − (e1 + x1d) + x3

3
− ẍ1d,

ẋ3 = f(x) +
4
√

x3

3
β(x1)u+ d(t, x).

(4)

In the following, the backstepping design technique is applied to obtaining control law of
system (4). The design procedure is divided into three steps shown as follows.

Step 1: From (4), treat the system state e2 as an independent input and let

e2 = g1(e1) = −k1|e1|γ1sign(e1), k1 > 0, 0 < γ1 < 1, (5)

where g1(e1) is defined as a desired virtual stabilizing algorithm. Select a Lyapunov
function V1 = 1

2
e21, and then

V̇1 = e1ė1 = −k1|e1|γ1+1 = −2k1V
γ1+1

2
1 . (6)

According to Lemma 2.1, e1 will converge to zero in finite time.
Step 2: In practice, e2 may be different from g1(e1) for all time. Therefore, define a

new error variable z1 = e2 − g1(e1). The derivative of z1 is expressed as

ż1 = 2ν(e2 + ẋ1d) − (e1 + x1d) +
x3

3
− ẍ1d − ġ1(e1). (7)

Take the state x3 as an independent input of the form g2(e2, z1) as the following

x3 = g2(e2, z1) = −3(2ν(e2 + ẋ1d) − (e1 + x1d) − ẍ1d − ġ1(e1) + k2|z1|γ2sign(z1)), (8)
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where k1 > 0, 0 < γ2 < 1. Select a Lyapunov function V2 = 1
2
z2
1 , and then

V̇2 = −2k2V
γ2+1

2
2 . (9)

Similarly, according to Lemma 2.1, z1 will converge to zero in finite time.
Step 3: Following Steps 1 and 2, we define a new error variable z2 = x3 − g2(e2, z1),

the derivative of z2 is expressed as

ż2 = F (t, x) +
4
√
x3

3
β(x1)u− ġ2. (10)

To obtain the finite-time convergence of the z2 on the sliding surface, the sliding manifold
is selected as follows

s = z2 + k3

∫ t

0

z2dτ + k4

∫ t

0

|z2|γ3sign(z2)dτ, (11)

where k3, k4 > 0, 0 < γ3 < 1.
Next, we propose the control law as

u =
3

4
√
x3β(x1)

(un + ur), (12)

where un = ġ2 − ˆ̄F , ur = −k3z2 − k4|z2|γ3sign(z2) − k5|s|γ4sign(s) − k6

s

(
||θ̂|| + α

)γ4+1

,

where 0 < γ4 < 1, k5, k6 > 0. Letting θ̃ = θ∗ − θ̂, the parameter
˙̂
θ is updated by the

following

˙̂
θ = sψ(x). (13)

Theorem 3.1. By using the control law (12) with update law (13), the state z2 will reach
the sliding surface s = 0 in finite time.

Proof: Select a Lyapunov function

V3 =
1

2
s2 +

1

2
θ̃T θ̃. (14)

Then we obtain V3 > 0 and its derivative is expressed as

V̇3 = s
{
ż2 + k3z2 + k4|z2|γ3sign(z2)

}
+ θ̃T ˙̃θ

= s

{
F (t, x) +

4
√
x3

3
β(x1)u− ġ2 + k3z2 + k4|z2|γ3sign(z2)

}
− θ̃T ˙̂

θ.
(15)

Substituting (12) into the above Equation (15), it yields

V̇3 = s

{
F (t, x) − ˆ̄F − k5|s|γ4sign(s) − k6

s

(
||θ̂|| + α

)γ4+1
}

+ θ̃T ˙̃θ

= s

{
F (t, x) + F ∗ − F ∗ − ˆ̄F + F̄ − F̄ − k5|s|γ4sign(s) − k6

s

(
||θ̂|| + α

)γ4+1
}
− θ̃T ˙̂

θ

≤ s

{
|F (t, x)| − F̄ + F ∗ − ˆ̄F − F ∗ + F̄ − k5|s|γ4sign(s) − k6

s

(
||θ̂|| + α

)γ4+1
}
− θ̃T ˙̂

θ

≤ s

{
− ε0 − ε+ θ̃Tψ(x) − k5|s|γ4sign(s) − k6

s

(
||θ̂|| + α

)γ4+1
}
− θ̃T ˙̂

θ

≤ θ̃T
(
sψ(x) − ˙̂

θ
)

+ s (|ε| − ε0) − k5|s|γ4+1 − k6

(
||θ̂|| + α

)γ4+1

.
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Due to ||θ̂−θ∗|| ≤ ||θ̂||+α, we have −k6

(
||θ̂|| + α

)γ4+1

≤ −k6||θ̂−θ∗||γ4+1. Substituting

(13) into above equation, we obtain

V̇3 ≤ − k5|s|γ4+1 − k6||θ̂ − θ∗||γ4+1 ≤ −2 min{k5, k6}
(

(s2)
γ4+1

2

2
+

(θ̃T θ̃)
γ4+1

2

2

)
≤ − 2 min{k5, k6}

(
s2

2
+
θ̃T θ̃

2

) γ4+1
2

= −2 min{k5, k6}V
γ4+1

2
3 .

Therefore, according to Lemma 2.1, the conclusion holds.

Theorem 3.2. Tracking error z2 on the surface s = 0 can converge to equilibrium z2 = 0
in finite time.

Proof: When tracking error z2 reaches the surface s = 0, we obtain

ṡ = ż2 + k3z2 + k4|z2|γ4sign(z2) = 0.

Defining Lyapunov function as V4 =
z2
2

2
, its derivative is expressed as

V̇4 = z2ż2 = −k3z
2
2 − k4|z2|γ3+1 ≤ −2 min{k3, k4}V4 − 2

γ3+1
2 min{k3, k4}V

γ3+1
2

4 .

According to Lemma 2.2, the conclusion holds.

Theorem 3.3. The system (4) is controlled by the control law (12) with the adaptive law
(13), the error state e1 will converge to equilibrium point in finite time T , and T satisfies

T ≤ 2V5(0)
1− ϵ

2
2

µ(2 − ϵ)
,

where ϵ = min{1 + γ1, 1 + γ2, 1 + γ3, 1 + γ4}, 0 < ϵ < 1 and

µ = min
{

2k1, 2k2, 2
γ3+1

2 min{k3 + k4}, 2 min{k5, k6}
}
.

Proof: Define Lyapunov function as V5 = V1 + V2 + V3 + V4. Then

V̇5 ≤ − 2k1V
γ1+1

2
1 − 2k1V

γ2+1
2

2 − 2 min{k5, k6}V
γ4+1

2
3 − 2

γ3+1
2 min{k3 + k4}V

γ3+1
2

4

≤ − µV
ϵ
2

1 − µV
ϵ
2

2 − µV
ϵ
2

3 − µV
ϵ
2

4 ≤ −µ{V1 + V2 + V3 + V4}
ϵ
2 = −µV

ϵ
2

5 .

According to Lemma 2.1, the conclusion holds.

Remark 3.1. If F (t, x) is known, we can design

u =
3

4
√
x3β(x1)

(−F (t, x) + ġ2 − k7|z2|γ5sign(z2))

to satisfy e1 converge to zero in finite time.

4. Simulation Studies. In this section, the proposed control scheme is applied to
controling electrostatic micro-actuators system. The parameters of electrostatic micro-
actuators system are given as r = 0.8, ρ = 0.1, ν = 1, d(t, x) = 0.1 + sin(2tx1),
x(0) = [0.1, 0.1, 0.1]T , xd = 0.8 + 0.2 cos(2t). The main design parameters ki = 3, γj = 3

5
,

i = 1, 2, · · · , 6, j = 1, 2, 3, 4. Firstly, we use the method of [18] to control electrostatic
micro-actuators system, and the control law is designed as follows:

u =
3

4
√
x3β(x1)

(
ḣ2 − ˆ̄F − k4ξ2 − k5s1

)
, (16)

where h2 = −3
(
2ν(e2 + ẋ1d) − (e1 + x1d) − ẍ1d − ḣ1 + k2ξ1

)
, h1 = −k1e1, ξ1 = e1 − h1,

ξ2 = e2 − h2 and s1 = ξ2 + k3

∫ t

0
ξ2(τ)dτ ,

˙̂
θ = sψ(x).
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Figure 3. Time response of e1 with the control scheme (16)
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Figure 4. Time response of u with the control scheme (16)
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Figure 5. Time response of e1 with the control scheme (12)

The Gaussian membership functions are assigned to xi over interval [−3, 3], and each

of the fuzzy systems use 72 fuzzy rules to model F̂ (x, θ):

µA1
i

= exp
[
−(x+3)2

2

]
, µA2

i
= exp

[
−(x+2)2

2

]
, µA3

i
= exp

[
−(x+1)2

2

]
, µA4

i
= exp

[
−(x+0)2

2

]
,

µA5
i

= exp
[
−(x−1)2

2

]
, µA6

i
= exp

[
−(x−2)2

2

]
, µA7

i
= exp

[
−(x−3)2

2

]
. Under the same system’s
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Figure 6. Time response of u with the control scheme (12)

parameters, the time response of e1 and u with the control scheme (16) are shown in
Figures 3 and 4.

Now, by using the present control scheme (12), the time responses of the error state
e1 and controller u are shown in Figure 5 and Figure 6, respectively. Obviously, the
effectiveness of the present control scheme (12) is better than the control law (16). Thus,
the numerical simulations verify theoretical analysis.

5. Conclusion. In this paper, the robust control scheme for controlling uncertain elec-
trostatic micro-actuators is proposed. Based on the rigorous mathematical analysis and
finite time control theory, the controller design was integrated with the TSMC via back-
stepping design such that the uncertain electrostatic micro-actuators state is driven to
a reference trajectory. Simulation results demonstrate that the proposed controller is
able to stabilize the uncertain electrostatic micro-actuators in finite time. Fuzzy adap-
tive prescribed performance control for uncertain electrostatic micro-actuators is our next
research direction.
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