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Abstract. This paper presents synchronization methods for a class of fractional-order
neural networks by means of linear control. The proposed controller can guarantee the
synchronization errors converge to an arbitrary small region of the origin. Of fundamen-
tal importance, the stability analysis for fractional-order neural networks in this paper
can provide a framework for stability analysis in fractional-order systems. Finally, sim-
ulation results are given to show the effectiveness of the proposed methods.
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1. Introduction. Fractional-order calculus has been used in physics and engineering,
and has more advantages comparing with integer-order systems in some fields [1, 2, 3, 4, 5].
For examples, stochastic extended fractional Kalman filter can be applied to stating re-
construction in some noisy environments [6], a fractional-order oscillator is able to produce
better linear FM signals compared to the conventional oscillator [7], and a fractional-order
operator can offer more accurate and elegant control performance than that of classical
control methods [8, 9].

Due to the rapid development of the fractional-order calculus, lots of results on fractio-
nal-order neural networks have been achieved, for example, in [10, 11, 12, 13, 14]. The
stability and asymptotical stability of fractional-order neural networks are studied by
means of an energy-like function analysis [12]. It has been pointed out that fractional
derivative offers a very good technique for the description of hereditary and memory
properties of kinds of processes. If fact, fractional-order systems usually involve infinite
memory terms. Taking these facts into consideration, the incorporation of a memory term
into the classical neural network model can be seen as an extremely important improve-
ment. In [15], the authors point out the use of developing and studying fractional-order
mathematical models of neural networks because fractional differentiation provides neu-
rons with a fundamental and general computation ability that can contribute to efficient
information processing, stimulus anticipation and frequency-independent phase shifts of
oscillatory neuronal firing. Besides, fractional-order neural networks are expected to be
effective in applications of parameter estimations because they are characterized by in-
finite memory. Thus, it is meaningful to study fractional-order neural networks both in
theory and in applications.

Synchronization for fractional-order neural networks has been studied by many authors
[12, 16, 17, 18, 19, 20]. To the best of our knowledge, there are few studies consider
the synchronization of fractional-order neural networks by using linear control methods
up to now. Motivated by this, the synchronization of fractional-order neural networks is
investigated in this paper. The remainder of this paper is organized as follows. Section
2 presents some preliminaries about the fractional calculus. Section 3 gives main results
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of this paper. Simulation results are presented in Section 4. Finally, Section 5 concludes
this work.

2. Preliminaries. In this paper the lower limit of the fractional calculus is chosen as
zero. The fractional-order integral with fractional order α can be described by

0D
−α
t f(t) =

1

Γ(α)

∫ t

0

(t − τ)α−1f(τ)dτ, (1)

where Γ(·) represents the Euler Gamma function.
There are three definitions of fractional-order derivative which are often used in liter-

ature, i.e., Grunwald-Letnikov, Riemann-Liouville, and Caputo definitions. The initial
conditions of Caputo derivative take on the same form as in integer-order differential
equations. So Caputo derivative is the most frequently utilized in control engineering,
and we will also use this definition. The Caputo fractional derivative is defined as

C
0 Dα

t f(t) =
1

Γ(n − α)

∫ t

0

(t − τ)n−α−1f (n)(τ)dτ, (2)

where α is the fractional order, n − 1 ≤ α < n.
The Laplace transform of Caputo fractional derivative can be given as follows:∫ ∞

0

e−stC
0 Dα

t x(t)dt = sα −
n−1∑
k=0

sα−k−1x(k)(0). (3)

In this paper, the following definitions and lemmas will be used.
The Mittag-Leffler function with two parameters can be written as [3]

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, (4)

where α, β > 0 and z ∈ C. Note that E1,1(z) = ez.
The Laplace transform of Mittag-Leffler function is

L
{
tβ−1Eα,β (−atα)

}
=

sα−β

sα + a
. (5)

Lemma 2.1. [4]. If A ∈ Rn×n, 0 < α ≤ 1, β is an arbitrary real number, and b > 0 is a
real constant, then

Eα,β(A) ≤ b

1 + ∥A∥
, (6)

where µ ≤ | arg(eig(A))| ≤ π with µ ∈ R satisfies πα/2 < µ < min{π, πα}.
Lemma 2.2. [2]. If t ∈ [0, T ] and

x(t) ≤ h(t) +

∫ t

0

k(τ)x(τ)dτ, (7)

where k(t) ≥ 0 and all the functions involved are continuous on the interval [0, T ]. Then
we can conclude

x(t) ≤ h(t) +

∫ t

0

k(τ)h(τ) exp

[∫ t

τ

k(u)du

]
dτ. (8)

Lemma 2.3. [3, 5]. Let 0 < α < 2, β is a complex number, and µ is a real number. If
πα

2
< µ < min{π, πα}, (9)

then for arbitrary integer n ≥ 1 the following expansion holds:

Eα,β(z) = −
n∑

j=1

1

Γ(β − αj)zj
+ ◦

(
1

|z|n+1

)
. (10)
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3. Main Results. The dynamic equation of a drive fractional-order neural network con-
sidered in this paper is described by

C
0 Dα

t xi(t) = −cixi(t) +
n∑

j=1

aijfj(xj(t)) + Ii, j = 1, 2, · · · , n, (11)

or equivalently
C
0 Dα

t x(t) = −Cx(t) + Af(x(t)) + I, (12)

where 0 < α < 1 is the fractional order, n represents the number of units in a neural net-
work; x(t) = [x1(t), x2(t), · · · , xn(t)]T is the state vector; A = {aij}, i = 1, 2, · · · , n,
j = 1, 2, · · · , n corresponds to the connection of the ith neuron to the jth neuron;
f(x(t)) = [f1(x1(t)), f2(x2(t)), · · · , fn(xn(t))] is the activation function of the neurons;
C = diag(ci), ci > 0 is the rate with which the ith neuron will reset its potential to the
resting state in isolation when disconnected from external inputs as well as the network;
I = [I1, I2, · · · , In]T is an external bias vector.

The response fractional-order neural network combined with a synchronization con-
troller u(t) is designed as

C
0 Dα

t y(t) = −Cy(t) + Af(y(t)) + I + u(t). (13)

To proceed, we need the following assumption.

Assumption 3.1. We assume that the nonlinear functions fi(x(t)), i = 1, 2, · · · , n are
bounded, i.e., there exist some positive constants bi such that ∥fi(x(t))∥ ≤ bi.

Define the synchronization errors as

e(t) = x(t) − y(t), (14)

with e(t) = [e1(t), e2(t), · · · , en(t)]T , ei(t) = xi(t) − yi(t).
From (12) and (13) we have

C
0 Dα

t ei(t) = −cie(t) +
n∑

j=1

aij(fj(xj(t)) − fj(yj(t))) − ui(t). (15)

Then we can design the following linear controller

ui(t) = kiei(t). (16)

We have the following results.

Theorem 3.1. Consider the drive fractional-order neural network (12) and the response
fractional-order neural network (13). If the controller is designed as (16) and the design
parameters ki are chosen large enough, then we have all signals in the closed-loop system
will remain bounded and the synchronization errors ei(t) will converge to an arbitrary
small neighbourhood of the origin.

Proof: Substituting the synchronization controller (16) into (15) gives

C
0 Dα

t ei(t) = −(ci + ki)e(t) +
n∑

j=1

aij (fj(xj(t)) − fj(yj(t))) − ui(t). (17)

Applying Laplace transform on (17), we can obtain

Ei(s) =
sα−1

sα + ci + ki

ei(0) +
1

sα + ci

n∑
j=1

aijL (fj(xj(t)) − fj(yj(t))), (18)
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where Ei(s) is the Laplace transform of ei(t), i.e., Ei(s) = L (ei(t)). According to the
property (5), the solution of (11) is given by

ei(t) = ei(0)Eα,1(−(ci + ki)t
α)

+
n∑

j=1

aij

∫ t

0

(t − τ)α−1Eα,α (−(ci + ki)(t − τ)α) (fj(xj(t)) − fj(yj(t)))dτ.
(19)

By using Assumption 3.1 we have

|ei(t)| ≤ |ei(0)|Eα,1 (−(ci + ki)t
α)

+ 2
n∑

j=1

|aijbj|
∫ t

0

(t − τ)α−1Eα,α (−ci(t − τ)α) dτ.
(20)

Noting that he Mittag-Leffler function with two parameters have the following property
[3]: ∫ t

0

τβ−1Eα,β (−kτα) dτ = tβEα,β+1(−ktα), (21)

we can obtain

|ei(t)| ≤ |ei(0)|Eα,1(−(ci + ki)t
α) + Mit

αEα,α+1 (−(ci + ki)t
α) (22)

where Mi =
n∑

j=1

|aij|bj.

From Lemma 2.3, we know there exists s positive constant t0, for all t > t0, the following
inequalities hold:

Mit
αEα,α+1(−(ci + ki)t

α) ≤ Mi

ci + ki

. (23)

Noting that
lim
t→∞

Eα,1 (−(ci + ki)t
α) = 0, (24)

we have a positive constant t1 such that

|xi(t)| ≤
2Mi

ci + ki

(25)

holds for all t > t1, i = 1, 2, · · · , n. As a result we also know that all signals in the
closed-loop systems will keep bounded. This ends the proof of Theorem 3.1.

4. Simulation Results. The following two-states fractional-order neural network is used
as the drive system in the simulation:{

C
0 Dα

t x1(t) = − c1x1(t) + 0.1 arctan x1(t) + 7 sin x2(t) − 1,
C
0 Dα

t x2(t) = − c2x1(t) − 0.2 arctan x1(t) − 10 sin x2(t) + 0.7.
(26)

Let the initial conditions of the drive system be x1(0) = 3, x2(0) = −4. From the system
model we known that Assumption 3.1 is satisfied.

The response fractional-order neural network is{
C
0 Dα

t y1(t) = − c1y1(t) + 0.1 arctan x1(t) + 7 sin x2(t) − 1 + u1(t),
C
0 Dα

t y2(t) = − c2y1(t) − 0.2 arctan x1(t) − 10 sin x2(t) + 0.7 + u2(t).
(27)

The initial condition of the response system is y1(0) = −2, y2(0) = 2.
In the simulation, the fractional order is α = 0.88, the system parameters are chosen as

c1 = 0.01, c2 = 0.02, and the controller design parameters are chosen as k1 = k2 = 3. The
synchronization results are presented in Figure 1. From the simulation results, we can see
that synchronization errors converge to zero rapidly. Since the controller is designed as
ui(t) = kiei(t), Figure 1 also means that the control input is continuous and bounded.
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Figure 1. Time response of the synchronization errors e1(t) and e2(t)

5. Conclusion. In this paper, linear control methods are used for synchronizing two
identical fractional-order neural networks. It is known that linear controller is easy to
construct and used in reality, thus the work of this paper is meaningful. The boundedness
of signals in the closed-loop system and the convergence of synchronization error can be
ensured. It should be pointed out that the mathematical model this paper used has
a special structure (see Assumption 3.1). How to decrease this assumption thus design
synchronization controller for fractional-order neural networks with more general structure
is our future research direction.
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