
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 7, July 2016 pp. 1787–1794

RESEARCH AND DEVELOPMENT OF SEMANTIC ANNOTATION
PLATFORM FOR SCIENTIFIC LITERATURE

Yao Liu1,2, Ziyuan Zhang3 and Yi Huang1

1Institute of Scientific and Technical Information of China
No. 15, Fuxing Road, Beijing 100038, P. R. China

liuy@istic.ac.cn
2Beijing Key Laboratory of Internet Culture and Digital Dissemination Research

No. 35, North Fourth Ring Road, Beijing 100101, P. R. China
3Department of Language Information Engineering

Peking University
No. 5, Yiheyuan Road, Beijing 100081, P. R. China

Received December 2015; accepted March 2016

Abstract. A semantic annotation platform can effectively organize digital resources
and extract knowledge fragments from structured and instructed text. The existing se-
mantic annotation platforms are facing with a great challenge, namely, the difficulty to
adapt and reuse. At present, some of the existing semantic annotation platforms in the
general domain demonstrate that they have high performance and high analytical accu-
racy. However, a domain oriented semantic annotation platform is still in the initial
stage, especially in scientific literature. Additionally, scientific literature processing tasks
are becoming increasingly diverse, so how to quickly solve these issues becomes a se-
rious problem. In view of the cases above, this paper develops a semantic annotation
platform for scientific literature. Using this platform to test and compare the processing
components for scientific literature can effectively complete the comparative testing work.
For researchers focusing on scientific literature, it is a testing platform to compare the
performance of components. All of these will help to promote the popularization and
application of semantic annotation platform for scientific literature.
Keywords: Scientific literature, Semantic annotation platform, Customization

1. Introduction. With the rapid development of computer science and Internet tech-
nology, we are confronted with the information overload problem rather than the problem
of lack of information. In particular, the number of scientific literature increases every
year, which makes it difficult for researchers to keep up with the growth rate of informa-
tion. The advent of digital library is in response to such an overload, to make it easier to
retrieve the scientific literature for us. However, the researchers still need to spend a lot
of time and efforts finding documents and information they really need.

Semantic annotation platform can effectively organize digital resources and extract
knowledge from domain structured text and Web unstructured text. Currently, some of
the existing semantic annotation platforms show high performance and high analytical
accuracy in general fields. A big challenge the existing semantic annotation platforms
face is that they are often difficult to adapt and reuse. In addition, scientific literature
processing task is becoming increasingly diverse and pluralistic. In order to effectively
solve these problems, this paper conducts an in-depth study, and develops a semantic
annotation platform for scientific literature.

In recent years, various methods on semantic annotation have been introduced. Carr et
al. [1] described the attempts of the COHSE project to define and deploy a Conceptual
Open Hypermedia Service to conduct semantic annotation. Kahan et al. [2] described a

1787



1788 Y. LIU, Z. ZHANG AND Y. HUANG

Web-based shared annotation system based on a general-purpose open resource descrip-
tion framework (RDF) infrastructure to annotate webpages. Handschuh et al. [3] provided
an S-CREAM framework that allows for creation of metadata for Web documents through
semantic annotation. Vargas-Vera et al. [4] presented MnM, an annotation tool which
provides both automated and semi-automated support for annotating Web pages with
semantic contents. Liu et al. [5] described a method to use domain ontology to annotate
professional literature. There are two main types according to the tagging methods used.

(1) Pattern-based semantic annotation platform: capable of performing pattern discov-
ery, and a user can define pattern or model manually. Most pattern discovery methods
followed the basic approach Brin [6] outlined. Defining an initial set of entities, scanning
the corpus to find models covering the entities, with the discovery of new models, and
then new entities are founded. This process is continuous recursively until no new entity
is found or the user terminates.

(2) Machine learning-based semantic annotation platform: to use statistical probability
model or induction model to predict the position of entities in documents. DATAMOLD
algorithm used hidden Markov model to find the entity data in Web documents. Armadillo
and Ont-O-Mat used Amilcare toolkit to conduct wrapper induction-based machine learn-
ing [7-9].

However, those semantic annotation platforms did not perform well in scientific litera-
ture, and most of them did not have the ability to process Chinese documents. Thus, a
semantic annotation platform for scientific literature (SAPSL), with flexible architecture
to customize processing tasks towards a user’s different needs, is urgently needed.

2. Framework. Based on the analysis above, open source software and natural language
processing technology are used to form the framework of the platform. The basic process
is shown as Figure 1.

The platform consists of three modules:
(1) File manager: a database that stores the text information and a database schema

based on an object-oriented model;
(2) A graphic user interface: to start data processing, view and evaluate results;
(3) CREOLE: a collection of reusable objects for language engineering.

3. Key Technologies. Here are the key technologies we use to construct SAPSL.

3.1. Interface customization. Based on the GUI of Gate Developer, we draw the GUI
of SAPSL. The interface provides a convenient graphical environment to develop required
functions accordingly. The main tasks of SAPSL are to annotate scientific literature, and
its core modules are as the following:

(1) Language components: composed by the documents and corpus;
(2) Processing components: common operations to processing documents;
(3) Applications: a sequence processing resources can be applied to a document or

corpus.
Therefore, an in-depth analysis on Gate Developer source code is conducted to prepare

for GUI customization. The source file directory structure is shown as Figure 2.
In addition to the directory structure, the structure of src/main, the core part of the

Gate Developer, is shown as Figure 3.
By analyzing the source code, we found that MainFrame.java in the GUI package pro-

vides the interface elements of the platform: language and icons. There are several meth-
ods to achieve localization and icon customization. With static public Icon getIcon (String
baseName), we can easily customize icon for SAPSL. However, localization is relatively
complicated. Localization for menus, buttons, and logs call for different methods, for in-
stance, resourcesTreeRoot = new DefaultMutableTreeNode (“首页”, true), button.setText



ICIC EXPRESS LETTERS, VOL.10, NO.7, 2016 1789

Figure 1. The basic process of SAPSL

Figure 2. The directory structure of gate developer



1790 Y. LIU, Z. ZHANG AND Y. HUANG

Figure 3. The structure of src/main

(), Out.prln (String x). Through these methods, a customized Chinese GUI for SAPSL
can be generated.

3.2. Plug-in development. In most cases, to use a processing component and language
component, a user must first load the plug-in that contains those resources. Definition of
these resources are stored in the CREOLE directory, i.e., an XML file describing all the
plug-ins and resources.

Plug-ins can be loaded from the following sources:
(1) Core plug-in: plug-in installed in the default directory;
(2) User plug-in: plug-in in the personal plugin directory;
(3) Native plug-in: plug-in stored in the disk, but not in the core plug-in or user plugin

directory;
(4) Remote plugin: plug-in that can be loaded from a remote machine via http protocol.
To create a user’s resource components or modify existing components JAVA code, we

have to go through the work in a life cycle, which includes:
(1) Instantiate a resource component: use Factory class, which includes the parameter

of resource component, recovery data, etc., to create a resource component;
(2) Import the resource component into development environment: use “New Resource

component” under the “File” menu;
(3) Resource component configuration and execution: to edit creole.xml or modify part

of the JAVA code that executes the resource component to build a jar file.

3.3. Embedding. JNI is a programming framework that enables Java code running in a
JVM to call and be called by native applications and libraries written in other languages
such as C, C++ and assembly. When an application is not entirely written by JAVA, JNI
is often introduced to handle this situation. For example, the standard JAVA library does
not support some specific features or libraries needed by SAPSL. To be more specific, we
need to embed a segmentation application written in C++ into SAPSL to get a much
better performance and result. The process that SAPSL calls ICTCLAS to execute POS
tagging function through JNI is shown as follows:

(1) Create a class (MyICTCLAS.java) to declare the native method;
(2) Use javac to compile the source code to generate class file;
(3) Use javah -jni to generate C/C++ header file;
(4) Code the local method in C/C++;
(5) Compile C/C++ to the local library, and create a dynamic link library file;
(6) Run the program.



ICIC EXPRESS LETTERS, VOL.10, NO.7, 2016 1791

4. Experiments and Analysis.

4.1. Setup. The experiment environment included an Intel Core (TM) 2 Duo P8600 (2.4
GHz) processor with 4.00 G RAM and Windows 8 operating system.

4.2. Function test. In the process of segmentation and POS tagging in natural lan-
guage processing, two methods were chosen to complete the task. The first method
loaded scientific literature cutting segmentation and POS tagging processing compo-
nent, with segmentation model “skin me pfr6000 seg.model” and POS tagging model
“skin me pfr6000 tag.model”; the second method loaded ICTCLAS processing compo-
nent, with PKU level mark as the tag set. All the tasks were processing the same corpus
and documents. The results are shown as Figure 4 and Figure 5.

Figure 4. The graphical user interface of SAPSL

As can been seen from Figure 4, a user can choose some more reasonable processing
components according to his own needs; for example, he can just choose the ICTCLAS
component to cut sentence into words, or he can choose those components needed to
complete the information extraction process. And Figure 5 shows the results of choosing
both word segmentation and POS tagging processing components for a Chinese patent
text.

4.3. Performance comparison. When processing scientific literature, a user can choose
different processing components to compare the pros and cons in SAPSL. MSTParser and
MaltParser are chosen to complete the syntactic analysis task. We selected a patent
corpus with 2000 sentences (1500 for training, 500 for testing). ACT, ADV, PUS, VOB,
VV, LA, UAS and LAS are the main index to evaluate the results of the experiment. The
results are shown in Table 1.

As can been seen from Table 1, ADV demonstrates a very high accuracy rate, recall
and F-measure while HED, VOB also make an acceptable performance. Notably, the VV
scores in both MSTParser and MaltParser are significantly lower. Overall, MSTParser
had a higher performance than MaltParser in most of the cases. However, MaltParser



1792 Y. LIU, Z. ZHANG AND Y. HUANG

Figure 5. The results of word segmentation and POS tagging

Table 1. The results of syntactic analysis of patent corpus

Index
MSTParser Component MaltParser Component

P R F1 P R F1
ACT 0.506 0.568 0.535 0.307 0.622 0.411
ADV 0.933 0.884 0.908 0.943 0.857 0.898
PUS 0.668 0.368 0.475 0.805 0.496 0.614
HED 0.708 0.705 0.707 0.571 0.419 0.483
VOB 0.746 0.758 0.752 0.671 0.721 0.695
VV 0.312 0.447 0.368 0.373 0.408 0.390
LAS 0.752 0.729
LA 0.857 0.826

UAS 0.800 0.778

had a high rate in PUS. Thus, a researcher with little technical background can easily use
SAPSL to make a performance comparison between different components with the same
function.

4.4. Annotation and extraction. This paper also took patent as a general scientific
literature to go through a full information extraction process, i.e., word segmentation,
POS tagging, syntactic analysis, semantic annotation and extraction. According to the
characteristic of patent text, we classified verb into four categories as shown in Table 2,
to extract type, feature, component and function information respectively of a patent.

In addition to verb, we looked into other clues that connect with the core verb, for
instance, preposition sometimes being a key factor to improve extraction accuracy. When
analyzing the dependency tree, we can also extract knowledge based on the syntactic
structure, as new extraction rules:



ICIC EXPRESS LETTERS, VOL.10, NO.7, 2016 1793

Table 2. Verb categories in patent literature

Verb Category Verbs

Patent Type
belong to (属于), involve (涉及), provide (提供), suit (适合), be
(为)

Patent Feature have (有), possess (具有)

Patent Component
adopt (采用), include (包括), install (安装), set (设置), connect
(连接)

Patent Function

achieve (实现), solve (解决), improve (提高), add (增加), pro-
mote (促进), facilitate (方便), ensure (保证), eliminate (消除),
control (控制), direct (指导), avoid (防止), apply (应用)

Table 3. The results of annotation and extraction of patent literature

Rules P R F1
Patent Type (QUN) 81.57% 96.88% 88.57%

Patent Function (ACT) 66.67% 92.31% 77.42%
Patent Component (ADV) 77.78% 92.45% 84.48%

(1) QUN in a sentence indicates “patent type” information;
(2) A phrase that acts as the object of ACT indicates “patent function” information;
(3) “Patent component” information often appears in a phrase with a “P + N + V”

pattern.
We processed 1000 patent abstract data with SAPSL, the results are shown as Table 3.
As can be seen from Table 3, the F value on average of the experiment is 86.49%, which

meets the basic requirement of patent knowledge extraction. It can be concluded that the
rules are very effective and SPASL is capable of processing scientific literature according
to users’ needs.

5. Conclusions. A semantic annotation platform can effectively organize digital re-
sources and extract knowledge fragments from structured and untrusted text. The existing
semantic annotation platforms are facing with a great challenge, namely, the difficulty to
adapt and reuse. In view of the issues above, this paper develops a semantic annotation
platform for scientific literature. With SAPSL, a user can compare the pros and cons
of the components for word segmentation, POS tagging, syntactic analysis, and semantic
annotation etc. in scientific literature. This paper aims to promote the popularization and
application of semantic annotation system for scientific literature. In the future we intend
to proceed along two lines in parallel: on one hand, to develop and adopt more processing
components for SAPSL; on the other hand, to optimize the processes of processing large
corpus of scientific literature.

Acknowledgment. This work is partially supported by the Opening Project of Beijing
Key Laboratory of Internet Culture and Digital Dissemination Research (ICDD201502)
National Key Project of Scientific and Technical Supporting Programs No. 2013BAH21-
B02. The authors also gratefully acknowledge the helpful comments and suggestions of
the reviewers, which have improved the presentation.

REFERENCES

[1] L. Carr, S. Bechhofer, C. Goble and W. Hall, Conceptual linking: Ontology-based open hypermedia,
Proc. of the 10th International Conference on World Wide Web, pp.334-342, 2001.

[2] J. Kahan, M.-R. Koivunen, E. Prud’Hommeaux and R. R. Swick, Annotea: An open RDF infras-
tructure for shared Web annotations, Computer Networks, vol.39, no.5, pp.589-608, 2002.



1794 Y. LIU, Z. ZHANG AND Y. HUANG

[3] S. Handschuh, S. Staab and F. Ciravegna, S-CREAM – Semi-automatic creation of metadata, Knowl-
edge Engineering and Knowledge Management: Ontologies and the Semantic Web, pp.358-372, 2002.

[4] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt and F. Ciravegna, MnM: Ontology
driven semi-automatic and automatic support for semantic markup, Knowledge Engineering and
Knowledge Management: Ontologies and the Semantic Web, pp.379-391, 2002.

[5] Y. Liu, H. Shi, D. Zheng and Y. Huang, Study on semantic annotation for professional literature,
ICIC Express Letters, Part B: Applications, vol.5, no.5, pp.1383-1389, 2014.

[6] S. Brin, Extracting patterns and relations from the world wide web, The World Wide Web and
Databases, pp.172-183, 1999.

[7] V. Borkar, K. Deshmukh and S. Sarawagi, Automatic segmentation of text into structured records,
ACM SIGMOD Record, vol.30, no.2, pp.175-186, 2001.

[8] A. Dingli, F. Ciravegna and Y. Wilks, Automatic semantic annotation using unsupervised informa-
tion extraction and integration, Proc. of SemAnnot 2003 Workshop, 2003.

[9] J. Kietz, R. Volz and A. Maedche, Extracting a domain-specific ontology from a corporate intranet,
Proc. of the 2nd workshop on Learning Language in Logic and the 4th Conference on Computational
Natural Language Learning, vol.7, pp.167-175, 2000.


