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ABSTRACT. Determining the ordered weighted averaging (OWA) operator weights is im-
portant in decision making applications. Several approaches have been proposed in liter-
ature to obtain the associated weights. This paper provides a minimax relative disparity
model (RDM) and a minimaz relative and absolute disparity model (RADM) for obtain-
ing OWA operator weights. The proposed model generates the OWA operator weights
by minimizing the mazimum absolute and relative difference between any two adjacent
weights under a given level of ones. A numerical example is examined using OWA oper-
ator weights to show its applications.
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1. Introduction. The ordered weighted averaging (OWA) operator defined by Yager [1]
provides a general class of parametric aggregation operators that includes the min, max
and average, and has shown to be useful for modeling many different kinds of aggregation
problems. The OWA operator has been used in a wide range of applications such as neural
networks [2,3], fuzzy logic controllers [4,5], decision making [6,7] and data mining [8,9].
To apply the OWA operator, a very crucial issue is the determination of the weights of
the operator.

A number of techniques have been suggested for generating the weights. O’Hagan [10]
first determined the OWA operator weights and suggested a maximum entropy method.
Fullér and Majlender [11] showed that the maximum entropy model could be transformed
into a polynomial equation that can be solved analytically. Fullér and Majlender [12] also
suggested a minimum variance method to obtain the minimal variability OWA operator
weights. Liu [13,14] presented the minimal variability OWA operator generating method
with the equidifferent OWA operator. Wang and Parkan [15] proposed a linear program-
ming model with a minimax disparity approach to obtain the OWA operator. Majlender
[16] extended the maximum entropy method to Rényi entropy and proposed a maximum
Rényi entropy OWA operator.

It is observed that most of the above mentioned methods produce regular weight dis-
tributions, which vary either in the form of exponential (geometric progression) or in the
form of arithmetical progression. For example, the maximum entropy weights vary in
the form of exponential, while the minimal variability weights and the minimax disparity
weights vary in the form of equidistance. Although regular weight distributions make
sense, there is no reason to believe that OWA operator weights can vary regularly. So,
Wang et al. [17] proposed chi-square methods to determine the OWA operator weights.
In this paper we will develop two new improved chi-square models to determine the OWA
operator weights that can vary in a rational yet general rather than regular way.
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2. The OWA Operator and Its Weight Generation Methods. An OWA operator
of dimension n is a mapping F: R — ¥R that has an associated weight vector W =
(wq, ..., w,) of having the properties Y ", w; = 1, 0 < w; < 1, and such that

F(zy,... 2) :Zwibi (1)
i=1

where b; is the ith largest of the collection of the aggregated objects {z1,...,x,}. In the
latter, we will denote the expression as Fy (z). The degree of “orness” associated with
this operator is defined as
1 _
orness(W) = Z (n—i)w; =« (2)

n—14%
=1

For vector © = (x1,...,2,) and weights W = (wy,...,w,), if Vi, j, x; < x;, implying
w; < (>)wj, then we call W is monotone. If w; < w; we call the OWA operator is
increasing; on the other hand if w; > w;, we call it is decreasing.

To determine OWA operator weights, Fullér and Majlender [12] proposed a minimum
variance method (MVM), which minimizes the variance of OWA operator weights under
a given level of orness. Their method requires the solution of the following mathematical
programming model:

Wang and Parkan [15] proposed a minimax disparity approach (MDA) for generating
OWA operator weights. They presented the following model for minimizing the maximum
disparity:

Min {_Max lw; — w¢+1|}

1,....n—1

s.t. orness(W) = > 2=ty =a, 0<a<l1 (4)
i=1

n
Swi=1, 0<w; <1, i=1,...,n
i=1

There is a common characteristic for above mentioned models. That is, the OWA
operator weights should be made as equally important as possible. So, based on such a
characteristic, Wang et al. [17] proposed the chi-square model (CSM) for obtaining OWA
operator weights.

=1
st. orness(W) => "= -w;=a, 0<a<l (5)

n
Sw,=1, 0<w; <1, i=1,...,n
i=1

The following section provides two new disparity OWA weight determination models
as an extension to the above models.
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3. The Minimax Absolute and Relative Disparity Method for Obtaining OWA
Operator Weights. As Wang et al. [17] mentioned to determine the OWA operator
weights, when the orness constraint is taken into consideration, models (3)-(5) could be
understood as making all the weights as close to each other as possible under a given
degree of orness. In this paper, two proportional difference models between two adjacent
weights are made as small as possible. We propose the following model for minimizing
the maximum disparity:
wif; o 1’}

s.t. orness(W) =Y 2= ., =, 0<a<l (6)

Min J; (W) = min{ max

i=1,....n—1

and
1 — Wi R .
Min Jo(W) = min Z:Ela%(_l o 1‘ + i:{?%(_l |w; wz+1|}
n .
s.t. orness(W) =3 = -w;=a, 0<a<l1 (7)

The two new models both produce as equally important OWA operator weights as
possible for a given orness degree. For convenience, we refer to model (6) as the relative
difference model (RDM) for determining the OWA operator weights and model (7) as
relative and absolute difference model (RADM). The RDM (6) and RADM (7) can be
reconfigured as the following models:

Min p

s.t. 1—p§w1:il <l+p, j=1,...,n—1

omess(W) =Y 2= .w,=a, 0<a<l (8)
1

wi=1, 0<w; <1, i=1,...,n
i=1
and
Min {p+ &}
s.t.l—pgw“_’ilg1+p, j=1,...,n—1
J
1_€§w]_w]+1§1+£7 j:177n_1
orness(W)=> 2= .w;=a, 0<a<l
i=1

n

(9)

n
Zwizl, nglgl, izl,...,n
i=1

Models (8) and (9) are both nonlinear and can be solved by using LINGO or MATLAB
software package. Note that models (8) and (9) are not applicable in @ = 0 and o = 1,
which are two extreme degrees of orness. We will use a = 0.0001 and a = 0.9999 to
represent the two extreme cases in the next section.

4. Numerical Example. In this section, we examine the two new models with a numer-
ical example and verify their applicability in determining OWA operator weights. Suppose
n = 5 and it is needed to determine the OWA operator weights satisfying different degrees
of orness: a =0,0.1,...,0.9,1, which are provided by the decision maker.

Tables 1 and 2 show the OWA operator weights determined by models (6) and (7),
respectively, which are also depicted in Figures 1 and 2. The models are solved by using
MATLAB software package.
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TABLE 1. The OWA operator weights determined by the RDM

w orness(W) = «

0.9999 0.9 0.8 0.7 06 05 04 0.3 0.2 0.1 0.0001
wy 0.9998 0.7376 0.5368 0.3582 0.2714 0.20 0.1106 0.0340 0.0002 0.0012 0.3870x10~*
wy 0.4087x107% 0.1629 0.2153 0.2789 0.2437 0.20 0.1653 0.1272 0.0886 0.0356 0.4087x10~4
wz 0.4087x10~% 0.0627 0.1591 0.2018 0.2089 0.20 0.2089 0.2018 0.1591 0.0627 0.4087x10~4
wy 0.4087x107* 0.0356 0.0886 0.1272 0.1653 0.20 0.2437 0.2789 0.2153 0.1629 0.4087x10~*
ws 0.3870x107* 0.0012 0.0002 0.0340 0.1106 0.20 0.2714 0.3582 0.5368 0.7376 0.9998

TABLE 2. The OWA operator weights determined by the RADM

w orness(W) = «

0.9999 0.9 0.8 07 06 05 04 03 0.2 0.1 0.0001
wy 0.9996 0.7330 0.4667 0.36 0.28 0.20 0.12 0.04 0.0000 0.0003 0.0000x10~*
wy  0.3999x1073 0.1685 0.3167 0.28 0.24 0.20 0.16 0.12 0.0500 0.0340 0.0000x10~*
wz  0.0000x107% 0.0642 0.1667 0.20 0.20 0.20 0.20 0.20 0.1667 0.0642 0.0000x10~*
wg 0.0000x10™* 0.0340 0.0500 0.12 0.16 0.20 0.24 0.28 0.3167 0.1685 0.3999x10~3
ws 0.0000x10~* 0.0003 0.0000 0.04 0.12 0.20 0.28 0.36 0.4667 0.7330 0.9996
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FIGURE 1. Variation of the relative difference OWA operator weights
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FIGURE 2. Variation of the relative and absolute difference OWA operator weights

To find the slight differences among the five methods, we consider the distributions
of the OWA operator weights in Table 3. Take oo = 0.8 for example. Table 3 shows the
distribution of the OWA operator weights determined by the five methods under the given
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TABLE 3. The distribution of the OWA operator weights under ao = 0.8

Difference of two adjacent weights Ratio of two adjacent weights
Method
W), — Wy W2 —W3 W3 — Wq4 Wy — Ws wl/wg wz/wg ’UJ3/’UJ4 ’UJ4/’UJ5
RDM 0.3215 0.0562 0.0705 0.0884 2.4932 1.3532 1.7957 -
RADM 0.15 0.15 0.1167 0.05 1.4736 1.8998 3.334 —
CSM 0.3235  0.1280  0.0458 0.0158 2.3848 2.2121 1.7659 1.3591
MDA 0.14 0.14 0.14 0.14 1.4375 1.7778 4.5 -
MVM 0.14 0.14 0.14 0.14 1.4375 1.7778 4.5 -

degree of orness, from which it can be seen very clearly that the weights determined by the
two new methods vary neither in the form of exponential nor in the form of arithmetical
progression, but in a very general way. This is what we are expecting because there is no
evidence to support the OWA operator weights to follow a very regular distribution [17].
However, if a = 0.6 or 0.7, Table 2 shows the weight distributions of RADM in the form
of equidistance, which is because of the absolute deviation dominant.

5. Conclusions. In this paper, we have proposed two new models for determining OWA
operator weights. The two new models prove to be practical and effective and can produce
the OWA operator weights that are very close to those obtained by existing methods.
However, the weights are determined by considering the absolute deviation and relative
deviation of two adjacent weights, and thus the two new models do not follow a regular
distribution and therefore make more sense.

In future research, we will further investigate the related properties of the absolute de-
viation and relative deviation models through an analytic solution. A detailed application
study of different models may also be a topic of interest.
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