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Abstract. An infinite impulse response (IIR) filter is useful in modeling and control
of dynamic systems for scientific and engineering applications. This paper presents a
novel double-IIR (D-IIR) model integrating two IIR filters in series for adaptive feed-
forward control (AFC). We first derive a parameter estimation algorithm for the D-IIR
filter model using statistical optimization method. In addition, an adaptive D-IIR filter
is devised for improving control performance of AFC systems subject to an uncertain
stochastic disturbance. Finally, a numerical example is provided to test superiority and
reliability of the proposed D-IIR filter based AFC system by comparing a conventional
AFC method.
Keywords: Double IIR filter, Adaptive feed-forward control, Stochastic disturbance

1. Introduction. A typical IIR filter is generally applied for modeling and control of
stochastic dynamic systems in various engineering disciplines [1]. In recent years, vari-
ous researches about IIR filter have been addressed in many applications. Bruton et al.
constructed a 2-D IIR filter for broadband beamforming and designed its analog filter
circuits for practical realization in [2]. Algreer et al. applied a recursive IIR filter tech-
nique to power conversion systems in which a parameter estimation algorithm is derived
for online system identification of it in [3]. Kozacky and Ogunfunmi designed a cascade
IIR-FIR filter model for adaptive noise control systems including narrowband periodic
and uncorrelated wideband components in [4]. In addition, there are several investiga-
tions about particular design methodologies of IIR filters according to given engineering
problems. Wang et al. proposed a new IIR filter design using evolutionary computation
for optimization of systems with multi-objective functions in [5] and Botts et al. utilized
Bayesian theory in IIR filter design especially for its parameter estimation in [6]. Mitiche
et al. developed a 2-D IIR filter model along with a model reduction method using Prony
theorem in [7], Wang et al. applied two-stage ensemble memetic algorithm to param-
eter estimation of IIR filters for its more effective convergence in [8], and Quelhas et
al. employed a pole-zero mapping method for reducing complexity of optimal parameter
estimation for IIR filter model in [9].

We present a novel D-IIR filter in this paper. The proposed D-IIR filter model is
simply constructed by integrating two typical IIR filters in series and applied to AFC [10]
of dynamic systems with unknown stochastic disturbance. We define a statistical objective
function with respect to stochastic deviation between the output signals of plant and D-IIR
filter. Then a parameter estimation algorithm is analytically derived based on a defined
objective function and adjustment rules for its parameter vectors are expressed using
statistical optimization method. Moreover, stability analysis for a D-IIR model is studied
from stability theory about linear discrete-time system. Finally, we propose an adaptive
D-IIR filter model in which a part of its parameters (zeros in characteristic equation)
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is modified via online learning algorithm for improving control performance. Numerical
simulation is carried out to demonstrate superiority and reliability of the proposed D-IIR
filer based AFC system against stochastic disturbance excitation.

This paper is organized as follows. Section 2 presents the proposed D-IIR filter model
for AFC systems and Section 3 derives a parameter estimation approach for the D-IIR
filter systems. We develop adaptive D-IIR filter based AFC methodology in Section 4 and
carry out numerical simulations to demonstrate reliability and superiority of the proposed
AFC control system in Section 5. Lastly, conclusions and future works are respectively
provided in Section 6.

2. DIIR Filter Model for AFC Systems. Generally, an objective of AFC is gener-
ating an active control input to decrease control error yielded in plants due to external
disturbance excitation usually in active noise control and vibration control applications.
In this paper, we deal with a generic AFC system including a stochastic disturbance with
unknown statistics. Block diagram of a typical AFC system model with discrete-time
index k is shown in Figure 1. Here, x ∈ R is the scalar control input of the AFC system,
d ∈ R is a scalar external disturbance, y ∈ R is a scalar system output, and e = x − y
is the tracking error of the plant and AFC system. The control objective of this AFC
system is to make the output approximate zero in the steady state in the presence of an
unknown stochastic disturbance. In other words, a control input is needed to cancel the
plant output due to the disturbance excitation.

Figure 1. A typical AFC system model

We propose a D-IIR filter model for constructing AFC system to realize particular
control objectives. Its framework is depicted in Figure 2 in which two generic IIR fil-
ters are simply connected in series. Here, the output variables γ and x are expressed
mathematically as

γ(k) = aTΓ1(k) = bT∆(k) (1)

x(k) = αT X(k) + βTΓ2(k) (2)

where a ∈ Rn1 , b ∈ Rm1 , α ∈ Rn2 , and β ∈ Rm2 are filter parameter vectors, and the
matrixes ∆ ∈ Rm1 and Γ1 ∈ Rn1 contain current and past input signals for e, and past
output signals for γ, and similarly the matrixes Γ2 ∈ Rm2 and X ∈ Rn2 include current
and past input signals for γ, and past output signals for x respectively.

3. Parameter Estimation of D-IIR Filter Model. The filter parameter vectors in
(1) and (2) should be optimally selected by an optimization technique to achieve the
desired control performance of AFC system. This task is carried out to derive adjustment
rules for them numerically. We first define an objective function composed of an error
scalar e in Figure 1. Since disturbance scalar d is considered as a random variable, the
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Figure 2. A proposed D-IIR filter model

plant output variable y becomes also stochastic. We employ the statistical expectation E
for defining an objective function as

J =
1

2
E[e2] =

1

2
E[(x − y)2] =

1

2
{E[x2] − 2E[x]E[y] + E[y2]} (3)

Note that variables x and y are statistically independent in (3). By substituting (2) to
E[x] and E[x2] in (3) respectively, we have

E[x] = E[αT X + βTΓ2] = αT E[X] + βT E[Γ2] (4)

and

E[x2] = E[(αT X + βTΓ2)
2] = αT E[XXT ]α + 2αT E[X]βT E[Γ2] + βT E[Γ2Γ

T
2 ]β (5)

We substitute the last terms of (4) and (5) to (3) and finally obtain an expectation of an
objective function as

J =
1

2

{
αT CXXα + 2αT mXβT mΓ2 + βT CΓ2Γ2β − 2αT mXmy − 2βT mΓ2my + my2

}
(6)

with CXX = E[X(k)X(k)T ], mX = E[X(k)], mΓ2 = E[Γ2(k)], CΓ2Γ2 = E[Γ2(k)Γ2(k)T ],
and my = E[y(k)], my2 = E[y2(k)]. Adjustment rules for the filter parameter vectors α,
β, a, and b in (1) and (2) are derived for minimizing a defined objective function in (6)
using optimization method. First, for the parameter vector α, we carry out the partial
differentiation against an objective function in (6) with respect to α and then let the
result be equal to zero as

∂J

∂α
= MXXα + mX(βT mΓ2) − mXmy = 0 (7)

From the last term we obtain an adjustment rule of parameter α(k) as

α(k) = C−1
XXmX(my − βT mΓ2) (8)

Second, in the same way, for parameter β, we have

∂J

∂β
= αT mXmΓ2 + CΓ2Γ2β − mΓ2my = 0 (9)
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And from (9) an adjustment rule of parameter β(k) is given by

β(k) = C−1
Γ2Γ2

mΓ2(my − αT mX) (10)

Next, we derive an adjustment rule for the parameter vector a. Similarly, we have a
partial differential equation against an objective function in (6) with respect to a as

∂J

∂a
=

1

2

{
∂(αT mXβT mΓ2 + 1

2
βT CΓ2Γ2β − βT mΓ2my)

∂a

}
(11)

where the two terms βT mΓ2 and βT CΓ2Γ2β are expanded respectively as

βT mΓ2 = β1a
T E[Γ1] + β1b

T E[∆] +
∑m2

i=2
βiE[γ(k − i + 1)] (12)

and
βT CΓ2Γ2β = β2

1E[γ2] +
∑m2

i=2 β2
i E[γ2(k − i + 1)]

= β2
1{aT CΓ1Γ1a + 2(aT mΓ1)(b

T m∆) + bT C∆∆b}
+

∑m2

i=2 β2
i (k)E[γ2(k − i + 1)]

(13)

with CΓ1Γ1 = E[Γ1Γ
T
1 ], mΓ1 = E[Γ1], C∆∆ = E[∆∆T ], and m∆ = E[∆]. By substi-

tuting (12) and (13) to (11), we then calculate the partial differential equation as

∂J

∂a
= αT mX(β1mΓ1) + β2

1

(
1

2
CΓ1Γ1a + mΓ1(b

T m∆)

)
− β1mΓ1my = 0 (14)

From this result, an adjustment rule of parameter a(k) is obtained as

a(k) = 2β−1
1 C−1

Γ1Γ1
mΓ1(my − β1b

T m∆ − αT mX) (15)

Finally, for the parameter b, in the same way, we differentiate an objective function with
respect to parameter b as

∂J

∂b
= αT mXβ1m∆ + β2

1a
T mΓ1m∆ +

1

2
β2

1C∆∆b − β1m∆my = 0 (16)

We simply obtain an adjustment rule of the parameter b(k) from (16) as

b(k) = 2β−1
1 C−1

∆∆m∆(my − β1a
T mΓ1 − αT mX) (17)

4. Adaptive D-IIR Filter. The parameter vectors β and b rarely influence absolute
stability of the D-IIR filter since they involve zeros of their transfer function and may be
located anywhere in the z-plane [1]. However, the parameters give an impact on dynamic
nature of the D-IIR filter such as the transient response, i.e., overshoot, rising time,
settling time, and so on. We devise online parameter estimation for β and b to realize
adaptive D-IIR filter based AFC mechanism. Their elements are recursively adjusted by
a parameter estimation rule for improving control performance due to unknown external
disturbance in practice. By applying the steepest descent optimization, the adjustment
rules for the parameter vectors β and b are initially given respectively by

β(k + 1) = β(k) − η
∂J

∂β
(18)

b(k + 1) = b(k) − η
∂J

∂b
(19)

where η is a learning rate. The partial differential equations in (18) and (19) are expanded
by applying the chain rule as

∂J

∂β
=

∂J

∂e

∂e

∂x

∂x

∂β
(20)

∂J

∂b
=

∂J

∂e

∂e

∂x

∂x

∂γ

∂γ

∂b
(21)
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We solve the partial differential equations in (20) and (21) as ∂e/∂x = 1, ∂x/∂β = Γ2,

∂x/∂γ = β1, ∂γ/∂b = ∆ and applying J = 1
k

∑k
i=1 e2(i) calculates ∂J/∂e = e2(k)/2k.

We apply these results to (20) and (21) and then have ∂J/∂β = e2(k)Γ2/2k, ∂J/∂b =
e2(k)β1∆/2k. Finally by substituting the resulting equations to (18) and (19) we have
the adjustment rules for the parameter vectors β and b as

β(k + 1) = β(k) − η̃(k)e2(k)Γ2 (22)

b(k + 1) = b(k) − η̃(k)e2(k)β1∆ (23)

where η̃(k) = η/2k is a time-varying learning rate.

5. Numerical Simulation. We carry out simulation experiment to test the proposed D-
IIR based AFC system. A mathematical model for a plant with a state vector ζ = [ζ1 ζ2]

T

is referred in [10], given by
[

ζ1(k + 1)
ζ2(k + 1)

]
=

[
σ1(k) 1
−0.16 −1

] [
ζ1(k)
ζ2(k)

]
+

[
0

σ2(k)

]
d(k)

y(k) = [σ3(k) 0]

[
ζ1(k)
ζ2(k)

] (24)

where parameters σ1, σ2, and σ3 are random variables whose numbers are uniformly
distributed within [0.5, 1] and an initial condition for a state vector ζ is given as ζ(0) =
[0 0.1]T . A control objective in this simulation is to make the plant output y close to zero
under the disturbance excitation. A random disturbance d in (24) is selected as a Gaussian
mixture in which two zero-mean Gaussian signals with each different variance (0.5 and 0.2
respectively) are linearly mixed. Figure 3 shows time-histories of disturbance excitation in
this simulation experiment. We build the proposed D-IIR based AFC framework against
such disturbance nature. For parameter estimation of the D-IIR filter, initial conditions
for its parameter vectors, a, b, α, and β are uniformly selected within [−0.1, 0.1]. As well,
we let n1 = 26, m1 = 18, n2 = 13, and m2 = 9 in (1) and (2) from which the best control
performance is obtained through the iterative learning routines. We test the constructed
D-IIR filter based AFC system with the disturbance and also apply a conventional AFC
approach adopted from [10] under the same simulation topology for a comparative study.
Figure 4 shows time-histories of the system errors for the two AFC systems against the
stochastic disturbance in Figure 3. From these results, we recognize that the D-IIR filter
based AFC is obviously superior to the addressed AFC method in [10], in that maximum
error level in the case of the proposed AFC is considerably reduced and its average error
is dramatically smaller over a given control period. We calculate the norm of the system
error defined by enorm =

√
eT e for the two control methods, and have enorm = 6.3 for the

conventional AFC and enorm = 0.9 for the proposed AFC. Apparently, this result proves
that the D-IIR filter based AFC has over 85% improvement in the control point of view.
These simulation results obviously conclude the proposed D-IIR filter effectively works
as an AFC mechanism and the constructed AFC system is reliable to improve control
performance against stochastic systems with unknown random disturbance.

6. Conclusions. This paper presents a novel D-IIR filter model linearly composed of
two generic IIR filters in series. This D-IIR filter is applied to AFC framework against
stochastic control systems with unknown random disturbance whose parameter is arbi-
trarily changed in practical applications. We derive the parameter estimation of it based
on stochastic learning mechanism and additionally propose an adaptive AFC methodol-
ogy in which a part of the D-IIR filter parameters is updated for reducing control error
due to random disturbance in practice. We prove superiority of the proposed D-IIR filter
based AFC system and its reliability in the control performance point of view through
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Figure 3. Random distur-
bance excitation

Figure 4. The two AFC sys-
tem errors

simulation experiment. In particular, we observe that the average error is effectively mit-
igated and the maximum error level is also significantly reduced for a given control period
in the case of the proposed AFC system. Future work will include a theoretical investi-
gation about stability analysis of the D-IIR filter model and a real-time implementation
for demonstrating its practical applicability in industry.
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