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Abstract. Acquisition of real-time and accurate vehicle state and parameter informa-
tion is critical to the research of vehicle chassis control system. However, these key state
variables are not easy to measure directly or cheaply. Regarding a 7-DOF non-linear vehi-
cle dynamic mode including Pacejka89 tire model, adaptive cubature Kalman filter based
on Sage-Husa noise estimator is proposed to overcome the non-linear model and time-
varying noise. The results of virtual experiment proving adaptive cubature Kalman filter
(ACKF) algorithm indicate that the estimation precision and anti-noise performance of
the ACKF method are superior to unscented Kalman filter (UKF) and extended Kalman
filter (EKF) method; therefore, the algorithm is satisfied with the performance of vehicle
state estimation.
Keywords: Vehicle dynamics, Pacejka89 tire model, State estimation, Cubature Kalman
filter, Adaptive filtering algorithm

1. Introduction. The vehicle state estimation is one of the key technologies of vehicle
dynamic control system. Its purpose is acquiring the critical state variables, such as
longitudinal velocity, lateral acceleration, yaw rate and other critical parameters. A lack of
information of vehicle state and parameters presents a major obstacle for the development
of vehicle dynamic control. The effectiveness of vehicle stability control mainly depends on
the accuracy of vehicle state and parameter. Currently yaw rate can already be measured
by gyro. However, information of sideslip angle has to be acquired through complicated
methods such as state estimation and GPS positioning. Among the above two methods,
state estimation is easier and more economical than the GPS method. Though some states
can be measured by sensors directly, state estimation method is also able to dramatically
reduce the interference brought by the measurement noise and process noise contained in
the signal [1-4].

Due to the non-linear characteristics of vehicle dynamic model, the extended Kalman
filter (EKF) is usually applied to the state estimation. However, after the first-order lin-
ear approximation, EKF ignores some of the non-linear characteristics. When the initial
error is large, the effect of estimation has a sharp decline and the rate of convergence
of filters becomes much slower. In order to further improve the performance of the non-
linear estimation, the unscented Kalman filter (UKF) is used for non-linear system state
estimation. After unscented transform set of sampling points is transformed to approx-
imate non-linear function probability distribution function, the estimation performance
of UKF is better than EKF [5-7]. In order to fulfill the requirements of the vehicle state
estimation, it is necessary to study higher precision and more simple ways. The CKF
is a new non-linear Gaussian filtering method proposed in recent years. CKF possesses
the strict mathematical proof that the numerical integration approximates the weighted
Gauss integration by 3-order cubature law. CKF which takes full advantage of cubature
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integral value to calculate multi-dimensional integral function has the high efficiency char-
acteristics. CKF possesses the equal volume weight of the 2n cubature point (n is the
integrand dimension). It proved that the CKF accuracy of the probability distribution
approaching nonlinear transformation is better than UKF. However, the CKF accuracy
of handling the noise statistical model is not accurate, even when filtering problem occurs
with outside influences change [8-10].

For the severe nonlinearity of vehicle estimation model, time-varying of noise statistical
characteristics and other issues, the adaptive cubature Kalman filter (ACKF) based on
Sage-Husa noise estimator is proposed. The estimation accuracy of UKF, EKF and the
proposed ACKF algorithm is comparatively analyzed by the virtual experiment. The re-
sults showed that the proposed algorithm has higher precision and strong noise immunity.

2. Vehicle Estimation Model. The 7-DOF non-linear vehicle dynamic model is adopt-
ed as the estimation model. The Pacejka89 tire model is used to calculate longitudinal
and lateral forces.

2.1. 7-DOF vehicle dynamic model. As shown in Figure 1, it is a 7-DOF non-linear
vehicle dynamic model which includes lateral, longitudinal and yaw motions of the vehicle
and the rotating motions of the four tires.

Figure 1. 7-DOF non-linear vehicle dynamic model

The equations of vehicle motion are written as
Longitudinal

u̇ = ax + vωr (1)

ax = (Fxfl cos δ + Fxfr cos δ + Fxrl + Fxrr − Fyfl sin δ − Fyfr sin δ) /m (2)

Lateral
v̇ = ay − uωr (3)

ay = (Fxfl sin δ + Fxfr sin δ + Fyfl cos δ + Fyfr cos δ + Fyrl + Fyrr) /m (4)
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The sideslip angle of each tire is given by

αfl,fr = δ − arctg
v + aωr

u ± tf
2
ωr

(9)

αrl,rr = −arctg
v − bωr

u ± tr
2
ωr

(10)

The side slip angle of the vehicle is

β = arctg
v

u
(11)

The tire slip of each tire is written as

sij =
reωij − uwij

uwij

(12)

The center velocity of wheel is given by

uwfl,wfr = vcog ± ωr

(
tf
2
∓ aβ

)
(13)

uwrl,wrr = vcog ± ωr

(
tr
2
∓ bβ

)
(14)

where, u represents the longitudinal velocity, v represents the lateral velocity, vcog rep-
resents the vehicle velocity, ax represents the longitudinal acceleration, ay represents the
lateral acceleration, ωr represents the yaw rate, β represents the vehicle sideslip angle, Γ
represents the yaw moment on z axis, δ represents the steering angle of front tire, Fxij

represents the longitudinal force of each tire, Fyij represents the lateral force of each tire,
Fzij represents the vertical force of each tire, Mzij represents the self-aligning torque of
each tire, m represents the vehicle mass, Iz represents vehicle moment of inertia on z
axis, a, b are the distances between the center of gravity to the front and the rear axle,
L = a + b represents the distances between the front and the rear axle, tf , tr are the
distances between the left and the right tire, respectively, h represents the height of the
center of gravity, αij represents the sideslip angle of each tire, sij represents the tire slip
of each tire, re represents the effective rolling radius, ωij represents the yaw rate of wheel,
and uwij represents the center velocity of wheel.

2.2. Tire model. Pacejka non-linear tire model is applied. The input variables of this
model contain vertical load, slip angle and tire slip. Lateral force, longitudinal force and
self-aligning torque of each tire can be calculated from unified Equations (15)-(17).

y(x) = D sin(Carctg(Bx − E(Bx − arctgBx))) (15)

Y (X) = y(x) + sv (16)

x = X + sh (17)

where the output variable Y in Equation (16) represents tire side force Fx, tire longitudinal
force Fy, and tire self-aligning torque Mz in different cases. The input variable X in
Equation (17) represents the tire slip S (when calculating longitudinal force) and tire
sideslip angle α (when calculating lateral and self-aligning torque). The expressions of
parameters B, C, D, E, sv, sh in Equation (15) can be seen in [10]. In the paper, under
vertical load of 3.16KN, the related parameters of tire model are valued as B = 0.237,
C = 1.65, D = 3610.5, E = 0.707, sv = 40.379, sh = 0.0473.
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2.3. Noise contained non-linear vehicle system. State vector of 7-DOF non-linear
vehicle dynamic model is written as:

xs = [u, v, ax, ay, ωr, β, Γ]T (18)

Input of system is

u = [δ, ωfl, ωfr, ωrl, ωrr]
T (19)

Observation vector is

y = [ωr, ay, u]T (20)

3. Estimation Method Based on ACKF. When the system has inaccurate noise
statistical characteristics or time-varying noise, the estimation accuracy of CKF becomes
much lower or more divergent. CKF uses Sage-Husa noise estimator estimating noise in
order to establish ACKF algorithms. When average value of the process and measurement
noise is zero, the variance estimates of Sage-Husa noise estimator respectively are written
as

Q̂k =
1

k

k∑
j=1

(
x̂j − x̂−

j

) (
x̂j − x̂−

j

)T
(21)
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(
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) (
zj − ẑ−j

)T
(22)

Here, x̂j = x̂−
j +Kεj, and εj = zj − ẑ−j . K is the gain of filter; therefore, Equation (21)

can be written as

Q̂k =
1

k
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Kεjε
T
j KT (23)

Here, E⌊εj, ε
T
j ⌋ = Pzz,j. Either side of Equation (23) is taken desired. It can be

expressed as the following
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Q̂k is given as the following
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Then, the recursive form of Q̂k is
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R̂k is given as the following
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Then, the recursive form of R̂k is
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The memory index dk−1 can be expressed as the following, similar to Sage-Husa time-
varying noise estimate method.

Q̂k = (1 − dk−1) Q̂k−1 + dk−1
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where, dk−1 = 1−b
1−bk , the b is forgetting-factor, the value is given in [0.95, 0.995].

In CKF algorithm, the covariance matrix of process noise and measuring noise is cal-
culated in Equation (29) and Equation (30), and thus, the ACKF is obtained.

4. Experimental Verification Based on ADAMS. To verify the proposed algorithm,
the virtual experiment is conducted on ADAMS. Parameters of the vehicle are: m =
1685kg, Iz = 2580kg·m2, a = 1.16m, b = 1.36m, tf = 1.54m, tr = 1.59m, h = 0.436m, re =
0.36m. ADAMS full vehicle model is composed of front and rear suspension subsystem,
body subsystem, steering subsystem, braking subsystem, front and rear tire subsystems.
Establish input and output “communicator” between subsystems. Tire model is the Pac89
tire model contained in the ADAMS software. The assembled ADAMS vehicle model is
shown in Figure 2.

Figure 2. Full vehicle model

Under extreme condition in ADAMS, to simulate the extreme conditions vehicle han-
dling response, vehicle travels along the double lane path. The whole operation period is
10s, and sampling time is 0.01s.

In the state estimation, process noise is set as a zero-mean white Gaussian noise se-
quence, and the covariance matrix is given by

Q̂k = 0.01 · |max(state(i)) − min(state(i))| · sin
( π

10
t
)

(i = 1, . . . , 7, 0 ≤ t ≤ 10) (31)

where, max(state(i)) and min(state(i)) are the maximum and the minimum values of the
ith state parameter during the whole period, respectively.

Covariance matrix of measurement noise is set as a zero-mean white Gaussian noise
sequence, the covariance matrix is given by

R̂k = 0.05 · |max(y) − min(y)| · sin
( π

10
t
)

0 ≤ t ≤ 10 (32)

Figure 3 is a comparison between the estimated and experimental values of six key state
parameters u, v, ax, ay, ωr, β by three algorithms ACKF, EKF, UKF.

As shown in Figure 3, the estimation accuracy of ACKF algorithm is higher than that
of UKF and EKF. In Figure 3(c), the estimation accuracy of the longitudinal acceleration
of three algorithms has obvious differences, and the estimation error of EKF is higher than
that of others. In Figure 3(e), because the model applies inaccurate initial parameters,
and EKF algorithm does not contain parameter correcting estimator, the accuracy of EKF
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(a) Longitudinal velocity (b) Lateral velocity

(c) Longitudinal acceleration (d) Lateral acceleration

(e) Yaw rate (f) Vehicle sideslip angle

Figure 3. Comparison between estimated and virtual experiment values
(double lane)

is apparently lower than that of UKF and ACKF, and even the values become seriously
distorted in the estimation of yaw rate.

To have a quantitative comparison between the three algorithms, Table 1 gives the
mean absolute error (MAE) and the root mean square error (RMSE) of each algorithm.

As shown in Table 1, under the same circumstance, the estimation accuracy of ACKF
is higher than that of the other two algorithms.

5. Conclusion.
(1) This work proposed ACKF and applied it into the vehicle states and parameters

estimation. The ACKF combines CKF and Sage-Husa noise estimator. Therefore, the
algorithm is able to conduct states and parameters parallel estimation of a non-linear
system containing inaccurate model parameters and time-varying noise.



ICIC EXPRESS LETTERS, VOL.10, NO.8, 2016 1877

Table 1. MAE and RMSE of each algorithm

Evaluation State parameter EKF UKF ACKF

MAE

u (m/s) 0.00452 0.0035 0.00136
v (m/s) 0.0687 0.0463 0.0261

ax (m/s2) 0.0669 0.0345 0.0105
ay (m/s2) 0.226 0.192 0.145
ωr (rad/s) 0.126 0.0115 0.00765
β (rad) 0.00304 0.00211 0.00109

RMSE

u (m/s) 0.0047 0.00325 0.0018
v (m/s) 0.099 0.0664 0.0278

ax (m/s2) 0.0657 0.0352 0.0165
ay (m/s2) 0.339 0.247 0.147
ωr (rad/s) 0.256 0.0212 0.0128
β (rad) 0.00436 0.00299 0.00129

(2) Under the ADAMS high speed extreme driving condition, ACKF which is compared
to UKF and EKF has higher estimation accuracy and stronger anti-noise performance for
the case when the measurement system has time-varying noise characteristics. ACKF can
estimate accurately vehicle states and parameters.

(3) The idea to integrate ACKF algorithm with vehicle key state parameter estima-
tion can provide theoretical guide to the software design of the estimator in the vehicle
automatic control system.
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