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Abstract. This paper will study the global exponential stability (GES) analysis for a
class of switched linear singular systems under any switching signal with dwell time
specifications. Unlike the classical dwell time method, the dwell time is an arbitrarily
prespecified constant, which is not computed by Lyapunov functions of the subsystems.
A novel method to construct multiple time-varying Lyapunov functions is proposed to
analyze the GES for a class of switched singular systems under dwell time specifications.
Finally, an example is given to illustrate the effectiveness of the proposed method.
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1. Introduction. In the literature, the switched systems have attracted much attention
due to their significance both in theory and applications [1-5]. Many methodologies have
been reported to study switched systems. Some sufficient conditions are provided to ensure
the asymptotic stability of switched systems under arbitrary switchings [7, 8]. Multiple
Lyapunov function method is an effective tool for studying the asymptotic stability of
switched systems under a certain switching law [9-11].

On the other hand, singular systems have been intensively studied due to the impor-
tant applications in, for example, circuit systems, robotics, and aircraft modeling [12].
It is shown that the behavior of state jumps degrades the system performance or even
destabilizes the system. Recently, many efforts have been done to the study of switched
singular systems. However, since stability, regularity, impulse elimination and state con-
sistence of switched singular systems should be considered at the same time, the analysis
of such system is more difficult. Therefore, the issue of the switched singular systems
has not been well developed [13-17]. There are a few results on stability analysis under
arbitrary switchings and some constrained switchings. The dwell-time-based is one of the
switching signals with constraints and has received a considerable attention. For example,
[18] utilized the average dwell-time approach to study the stability analysis of switched
singular systems with time-varying delay. However, the average dwell time requires a
minimum time period during which no switching occurs and is no less than a positive
constant τ . It is shown that the minimum of admissible dwell time is computed by two
mode-dependent parameters, i.e., the increase coefficient of the Lyapunov-like function at
switching instants and the decay rate of the Lyapunov-like function during the running
time of subsystems. Unlike the classical dwell time method, the dwell time is an arbi-
trarily prespecified constant, rather than obtained by calculating these two parameters.
Although stability analysis with dwell time specifications has been obtained in [19], few
results have been presented for the stability analysis of switched singular systems with
dwell time specifications, which partly motivates our present work.

This paper will study the GES analysis under dwell time specifications for a class of
switched singular systems. Multiple time-varying Lyapunov functions are constructed to
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analyze the GES of switched singular systems under dwell time specifications. An example
is provided to illustrate the effectiveness of the proposed method.

This paper is organized as follows. Some preliminaries are introduced in Section 2. The
stability analysis and the main contribution for the switched linear singular system are
presented in Section 3. Then, a numerical example is provided in Section 4. Conclusions
are given in Section 5.

2. Problem Formulation. Consider a class of switched linear singular systems:

Eσ(t)ẋ(t) = Aσ(t)x(t), x0 = x(0), (1)

where x(t) ∈ Rn is the state and x0 ∈ Rn is the initial state; the function σ(t) : R+ →
M = {1, 2, . . . , m} is the switching signal which is assumed to be a piecewise constant or
piecewise continuous (from the right) function depending on time or state or both; m is
the number of models (called subsystems) of the switched system; Ei and Ai, ∀i ∈ M , are
constant matrices with rank(Ei) = r ≤ n. We assume that σ(t) = σ(tk) = ik, ik ∈ M ,
t ∈ [tk, tk+1), where tk is the switching instant, which means that the ikth subsystem is
activated when t ∈ [tk, tk+1). For simplicity, we use (Ei, Ai) to denote the ith subsystem.
We call the set Dτ1 of all switching signal with dwell time specification τ1 > 0, that is the
set of all σ(t) for which the time interval between successive switching instants satisfies
tk − tk−1 > τ1, i = 1, 2, . . ..

Our goal is to analyze the GES for switched singular system (1) under σ(t) ∈ Dτ1 .

Definition 2.1. [12] The singular system Eẋ(t) = Ax(t) or the pair (E, A) is said to be
(i) regular if det (sE − A) is not identically zero; (ii) impulse-free if deg (det (sE − A)) =
rank (E); (iii) stable if all the roots of det (sE − A) = 0 have negative real parts.

Assumption 2.1. All singular systems (Ei, Ai), ∀i ∈ M are regular and impulse-free.

Since rank (Ei) = r ≤ n, we can find nonsingular matrices Hi and Ni, i ∈ M , such
that (Ei, Ai) takes the following dynamics decomposition form [20]:

HiEiNi =

[
Ir 0
0 0

]
=: Ē, HiAiNi =

[
A11 (i) A12 (i)
A21 (i) A22 (i)

]
=: Āi. (2)

Noticing that the decomposition (2) can be obtained via a singular value decomposition
on Ei and the decomposition is not unique. By Assumption 2.1, we know that A22 (i) ∈
R(n−r)×(n−r) is nonsingular and the solution of system (1) is piecewise-smooth.

By the following state transformation in [17]:

x̄(t) =

[
x̄1(t)
x̄2(t)

]
= N−1

ik
x(t), t ∈ [tk, tk+1) , (3)

the switched singular system (1) is equivalent to the impulsive switched singular system:

˙̄x1(t) = A11 (σ(t)) x̄1(t) + A12 (σ(t)) x̄2(t), (4)

0 = A21 (σ(t)) x̄1(t) + A22 (σ(t)) x̄2(t), (5)

x̄
(
t+k

)
= Γikik−1

x̄
(
t−k

)
=

[
I 0

−A−1
22 (ik) A21 (ik) 0

]
N−1

ik
Nik−1

x̄
(
t−k

)
, (6)

for ik, ik−1 ∈ M , ik ̸= ik−1.

3. Stability Analysis. In this section, we will develop a piecewise time-varying Lya-
punov function method to analyze the stability of the impulsive switched singular system
(4)-(6).
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Theorem 3.1. Consider system (1) satisfying Assumption 2.1. Suppose that there exist
matrices Pi1 > 0, Pi2 > 0, and parameters µi > 1, ηi > 0, τ1 > 0, such that

Pi1 − Pi2 > 0, (7)[
−µPi21 ΠT

i1i2
Pi12

∗ −µi1Pi12

]
≤ 0, ∀i1, i2 ∈ M, (8)

siPil + PilÂ(i) + ÂT (i)Pil + 1/τ1 (Pi1 − Pi2) + ηiPil < 0, l = 1, 2, (9)

with Πij =
[

I 0
]
N−1

i Nj

[
I

−A−1
22 (j) A21 (j)

]
and µ = max

{
1
µi

, ∀i ∈ M
}
, Â(i) =

A11(i) − A12(i)A
−1
22 (i)A21(i), si = 1/τ1ln(µi). Then, system (1) is GES under σ(t) ∈ Dτ1.

Proof: The set {tk} generated by σ(t) ∈ Dτ1 denotes the switching sequences with
τ1 ≤ tk − tk−1, k ∈ N . Then, for each {tk} generated by σ(t) ∈ Dτ1 and t ∈ [tk, tk+1), let

ρ(t) =
t − tk

tk+1 − tk
, ρ̃(t) = 1 − ρ(t), ρ1(t) =

1

tk+1 − tk
, ϕ (t) = µ

ρ(t)−1
i , (10)

Pi(t) = ρ(t)Pi1 + ρ̃(t)Pi2, ∀i ∈ M, (11)

where µi > 1, Pi1 > 0, Pi2 > 0, ∀i ∈ M . It is obvious that ρ
(
t+k

)
= 0, ρ

(
t−k

)
= 1,

µ−1
i ≤ ϕ(t) ≤ 1, and ϕ̇(t) ≤ ϕ(t) ln(µi)

τ1
.

For system (1), choose the following piecewise time-varying Lyapunov function:

Vi (t) = ϕ(t)x̄T (t)ĒP̄i(t)x̄(t) = ϕ(t)x̄T (t)Ē

[
Pi(t) 0
Pi3 Pi4

]
x̄(t). (12)

It follows from (12) that Vi (t) = ϕ(t)x̄T
1 (t)Pi(t)x̄1(t). For t ∈ [tk, tk+1), from (7) and (8),

taking derivative of Vi(t) along the trajectory of system (1) yields

V̇i(t) ≤ ϕ(t)six̄
T
1 (t)Pi(t)x̄1(t) + x̄T

1 (t)
ϕ(t)

tk+1 − tk
[Pi1 − Pi2] x̄1(t)

+ 2ϕ(t)x̄T
1 (t)Pi(t)

[
A11(i) − A12(i)A

−1
22 (i)A21(i)

]
x̄1(t)

≤ ϕ(t)x̄T
1 (t)

[
siPi(t) + Pi(t)Â(i) + ÂT (i)Pi(t) + ρ1(t) (Pi1 − Pi2)

]
x̄1(t)

≤ ϕ(t)x̄T
1 (t)

[
si (ρ(t)Pi1 + ρ̃(t)Pi2) + (ρ(t)Pi1 + ρ̃(t)Pi2) Â (i)

+ ÂT (i) (ρ(t)Pi1 + ρ̃(t)Pi2) + 1/τ1 (Pi1 − Pi2)
]
x̄1(t)

= ϕ(t)x̄T
1 (t)

[
ρ(t)siPi1 + ρ(t)Pi1Â (i) + siρ̃(t)Pi2 + ρ̃(t)Pi2Â (i)

+ ρ(t)ÂT (i)Pi1 + ρ̃(t)ÂT (i)Pi2 + ρ(t)/τ1 (Pi1 − Pi2) + ρ̃(t)/τ1 (Pi1 − Pi2)
]
x̄1(t)

= ϕ(t)ρ(t)x̄T
1 (t)

[
siPi1 + Pi1Â(i) + ÂT (i)Pi1 + 1/τ1 (Pi1 − Pi2)

]
x̄1(t)

+ ϕ(t)ρ̃(t)x̄T
1 (t)

[
siPi2 + Pi2Â(i) + ÂT (i)Pi2 + 1/τ1 (Pi1 − Pi2)

]
x̄1(t)

≤ −ηiϕ(t)x̄T
1 (t) (ρ(t)Pi1 + ρ(t)Pi2) x̄1(t)

= −ηiVi (t) , (13)

where Â(i) =
[
A11(i) − A12(i)A

−1
22 (i)A21(i)

]
.

From (5) and (6), one has that

x̄1

(
t+k

)
=

[
I 0

]
Γikik−1

x̄
(
t−k

)
=

[
I 0

]
Γikik−1

[
I

−A−1
22 (ik−1) A21 (ik−1)

]
x̄1

(
t−k

)
= Πikik−1

x̄1

(
t−k

)
. (14)
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According to Schur complement lemma, one has that (9) is equivalent to

−µPi21 + µ−1
i1

ΠT
i1i2

Pi12Πi1i2 ≤ 0. (15)

Let V (t) =
∑m

k=1 θk(t)Vk(t, x) with θk(t) =

{
1, if σ(t) = k,
0, otherwise.

Therefore,

V
(
t+k

)
= µ

ρ(t+k )−1

ik
x̄T

1

(
t+k

) [
ρ

(
t+k

)
Pik1 + ρ̃

(
t+k

)
Pik2

]
x̄1

(
t+k

)
= µ−1

ik
x̄T

1

(
t+k

)
Pik2x̄1

(
t+k

)
= µ−1

ik
x̄T

1

(
t−k

)
ΠT

ikik−1
Pik2Πikik−1

x̄1

(
t−k

)
≤ x̄T

1

(
t−k

)
µPik−11x̄1

(
t−k

)
= µx̄T

1

(
t−k

)
Pik−11x̄1

(
t−k

)
= µx̄T

1

(
t−k

) [
ρ

(
t−k

)
Pik−11 + ρ̃

(
t−k

)
Pik−12

]
x̄1

(
t−k

)
= µϕ

(
t−k

)
x̄T

1

(
t−k

)
Pik−1

(
t−k

)
x̄1

(
t−k

)
= µV

(
t−k

)
≤ V

(
t−k

)
. (16)

It is obvious that V (t) ≤ e−ηmintV (0) with ηmin = min {η1, η2, · · · , ηm}, which implies that
x̄1(t) converges exponentially to zero. Since x̄2(t) = −A−1

22 (σ(t)) A21 (σ(t)) x̄1(t) in (5),
then x̄2(t) also converges exponentially to zero. This indicates that system (1) is GES
under any switching signal σ(t) ∈ Dτ1 .

Remark 3.1. In many actual applications, the minimum value of τ1 is of interest. With
fixed parameters µi > 1 and ηi > 0, ∀i ∈ M , it can be obtained through following opti-
mization procedure

min τ1

s.t. (7), (8) and (9).

4. Example. In this section, we present a numerical example to demonstrate the effec-
tiveness of the proposed design method.

Consider the switched singular system (1) with

E1 =

 1 0 0
1 1 0
1 1 0

 , E2 =

 1 0 0
0 1 0
1 1 0

 , A1 =

 −2 0 −1
0 −2 −1
0 −1 1

 ,

A2 =

 −3 1 3
1 −3 2
−1 1 −3

 .

Let H1 =

 1 0 0
−1 1 0
0 −1 1

, H2 =

 1 0 0
0 1 0
−1 −1 1

, N1 = N2 = I3. Then, by (2),

we obtain that Ē =

 1 0 0
0 1 0
0 0 0

, Ā1 =

 −2 0 −1
2 −2 0
0 1 2

, Ā2 =

 −3 1 3
1 −3 2
1 3 −8

,

Π12 = Π21 =

[
1 0
0 1

]
.
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Let τ1 = 0.05, µ1 = 1.02, µ2 = 1.02, η1 = 0.01, η2 = 0.01. By Theorem 3.1, we obtain

P11 =

[
6.6208 0

0 6.6208

]
, P12 =

[
6.4937 0

0 6.4937

]
,

P21 =

[
5.4381 0

0 5.4381

]
, P22 =

[
5.3704 0

0 5.3704

]
.

The simulation is carried out with the initial state x(0) = [−2.3,−1.8,−3.6]T . Figure
1(a) shows the state trajectories of the switched system (1) under a randomly chosen
switching signal of time, shown in Figure 1(b). By using Theorem 3.1, it can be clearly
observed from Figure 1(a) that the exponential stability has been achieved. Thus, the
simulation results well illustrate the effectiveness of the proposed method.
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Figure 1. State trajectories of x(t) and switching signal σ(t)

5. Conclusions. The issue of GES analysis for a class of switched linear singular sys-
tems with dwell time specifications has been studied in this paper. Unlike the classical
dwell time method, the dwell time is an arbitrarily prespecified constant, which is not
computed by Lyapunov functions of the subsystems. A novel method to construct mul-
tiple time-varying Lyapunov functions has been proposed to analyze the GES for a class
of switched singular systems under dwell time specifications. Finally, an example is pre-
sented to demonstrate the effectiveness of the proposed method. How to design observers
for switched singular systems will be an interesting topic for future research.
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