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Abstract. For a given sparse graph sequence GN , we give definition of convergence of
graph structure. We study a colouring process on a convergent graph sequence. At each
time t, a yet uncoloured vertex, π(t), is coloured by a state (color) in S. The state is
drawn by distribution vt

(
·
∣∣GN,S,t

π(t),d

)
∈ P(S), where vt

(
·
∣∣π(t), GN,S,t

π(t),d

)
depends on time t,

the subgraph (with colour) within distance d to vertex π(t) at time t, denoted by GN,S,t
π(t),d.

Such coloring strategy is called local coloring strategy. We prove that for a convergent
sequence of sparse graph, if the graphs are not too interactive, then any such colouring
strategy, vt

(
·
∣∣GN,S,t

π(t),d

)
, induces a convergent sequence of empirical process on coloured

graph structure. We point out the possible application of this weak convergence result to
large deviation theorems on probability model defined by graph. Such models are natural
generalization of, i.i.d. setting, discrete markov chain and mean field probability model.
Keywords: Large deviation theory, Graph coloring, Local control, Random graph

1. Introduction. Large deviation principles (LDP) on dense graph have drawn large
attention [1,3]. The kind of graph considered in these results are dense in the sense that
each vertex of the graph is connected with a significant portion of all other vertexes. The
focus of these studies is on graph (coloured or not) structure, i.e., “how many graphs are
there with certain property P”.

In this paper, we study the coloring process controlled by a local strategy. Establishing
weak convergence property is a component of the proof of large deviation. For example, in
the proof of Sanov theorem (LDP for i.i.d. model), weak convergence property is simply the
law of large number for i.i.d. model. We pointed out in Section 3 that to establish LDP for
probability model induced by sparse graph, it is necessary to study the coloring process
on the graph. Our main result proves the convergence (as the graph size approaching
infinity) of the empirical process on colored graph structure controlled by a local strategy
under the condition that the graph is “not very interactive”.

For a sparse graph, each vertex is connected with constantly many vertexes. Various no-
tions of randomness and thus convergence on sparse graph are proposed [9]. Under Erdős-
Rényi randomness, the rate function of any sparse graph would be −∞, thus making LDP
for sparse graph meaningless. What is also interesting is LDP for probability model defined
(implicitly or explicitly) by a sparse graph; such models include i.i.d. setting, discrete time
Markov process and mean field model. To see this, let us introduce some notations. A cen-
tered graph G = (V, E, v) is a directed graph (V,E) with a specified center v ∈ V . (Some
times we write Gv to indicate v as its center.) For a directed graph G = (V, E), a vertex i ∈
V , let Gi,d denote subgraph consisting of vertexes within distance d to i, which specify i as
its center. Let S be a set. A coloured graph GS = (V,E, f) is a graph G = (V,E) together
with a partial function f : V → S. The discrete homogeneous markov process model
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can be seen as a probability model of X0, X1, · · · , Xn with joint distribution
n∏

i=1

q
(
GS

i,2

)
,

where the graph G is a simple chain. And let G1 = ({v1, v2}, {(v1, v2)}, center = v1),
G2 = ({v1, v2, v3}, {(v2, v3), (v1, v2)}, center = v2), G3 = ({v1, v2}, {(v1, v2)}, center = v2),
then q

(
GS

1

)
= p(f(v1)), q

(
GS

2

)
= p(f(v2)|f(v1)), q

(
GS

3

)
= p(f(v2)|f(v1)), where p is

transition probability of the process X0, X1, · · · , Xn.
The problem on limit behavior and LDP of these models arise naturally. Take the

discrete markov process model as an example. For a finite set S, a given p. What is the
limit distribution of ({v1, v2}, {(v1, v2)}, f), f(v1) = s, f(v2) = s′, as n → ∞. What is the
speed of convergence of empirical distribution of states to that limit (wrt time length).
For discrete time markov process, the first problem is long known, and the second question
is answered in [4,5]. [3] studied dynamic sparse graph with independent color. Research
on graph coloring process also arises in ecology study. [7,8] study the limit behavior (wrt
time) of various contact processes. The contact process simulating the survival of a species
is a 2-colored graph process. The state of each vertex evolves according to the states of
its neighbors. [2,6,10] study the limit behaviors of multitype contact process. The central
problem is, when can two species coexist. However, research on relation of convergence
of general graph coloring process with graph structure is vacant.

In Section 2 we introduce a class of probability model induced by graph. In Section 3
we outline a proof of large deviation of such models. And point out the relation to weak
convergence theorem of local coloring strategy. In Section 4 we give our main result. And
in Section 5 we prove 4.1. In Section 6 we conclude the paper.

2. Sparse Graph Limit. To discuss LDP, let us first define convergence for sparse graph
sequence. We say a sequence of graphs converge if the empirical distribution of any given
finite graph in that sequence has a limit. Details are as the following.

Let G, GS, GS
i,d be directed graph, coloured directed graph, and centered coloured

directed graph resp. [G],
[
GS

]
,
[
GS

i

]
denote their isomorphism equivalent class. When no

ambiguity is made, we simply write G, GS, GS
i,d for [G],

[
GS

]
,
[
GS

i

]
resp.

For a directed graph G = (V, E), coloured directed graph GS = (V, E, f), let,

LG
d =

1

|V |

|V |∑
i=1

δ[Gi,d]; LGS

d =
1

|V |

|V |∑
i=1

δ[GS
i,d]

(1)

Gd = {[G] : G = (V, E, center = v), (∀x ∈ V )d(x, v) ≤ d}
GS

d =
{[

GS
]

: GS = (V,E, f, center = v), (∀x ∈ V )d(x, v) ≤ d
}

(2)

Clearly, LG
d ∈ P(Gd), LGS

d ∈ P
(
GS

d

)
. The convergence of graph structure is defined by

convergence of LG
d . Gd is clearly a countable set, and P(Gd) is clearly a subspace of [0, 1]∞.

So it is natural (and enough for this paper) to equip P(Gd) with product topology. Under

product topology, convergence of a sequence LGN

d is equivalent to convergence of LGN

d (Gd)
for all Gd ∈ Gd.

The probability model induced by a graph can usually be written as,

X1, · · · , XN |GN ∼
exp

{
NF

(
LGN,S

d

)} ∏
i≤N

ρ(dXi)∫
SN exp

{
NF

(
LGN,S

d

)} ∏
i≤N

ρ(dXi)
(3)

where X1, · · · , XN |GN is the joint distribution of X1, · · · , XN given graph GN . And

F ∈ Cb

(
P

(
GS

d

)
, R

)
. Take discrete time Markov process as an example, F

(
LGN,S

d

)
=∫

GS
d

log
(
q
(
GS

))
LGN,S

d

(
dGS

)
, with d = 1.
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It is natural to ask, for probability model (3), if the sequence of graph GN converges

in the sense that LGN

d converges, then the coloured directed graph LGN,S

d (whose law is

determined in an obvious way through model (3)) also converges. And if LGN,S

d converges,
what is the speed?

3. An Outline of LDP on Probability Model Induced by Sparse Graph. The
LDP for model (3) could be, for any given d, F ∈ Cb

(
P

(
GS

d

)
, R

)
, if LGN

d′ converges to

some L∞
d′ for all d′, then LGN,S

d satisfies LDP with some rate function. LDP is usually
obtained by transforming the problem into a control problem (see [5] Chapter 1,2). In
our model, we study a random order coloring process. Random order instead of graph
structure specific order, enables the application of this result to any convergent graph
sequence. More specifically, let π : N → N be a uniformly random permutation of

{1, 2, · · · , N}. Let vt

(
·
∣∣GN,S,t

π(t)

)
: t × GN,S,t

π(t) 7→ P(S), which can be viewed as a coloring

strategy. We define the following stochastic process, GN,S,v,t, t ∈ [0, 1].

Definition 3.1.

GN,S,v,0 =
(
V N , EN , f0

)
, dom(f0) = ∅.

For i = 1, 2, · · · , N

Xπ(i) ∼ vi/N

(
·
∣∣GN,S,v,(i−1)/N

π(i)

)
Let fi(π(i)) = Xπ(i), fi(k) = fi−1(k) if k ̸= π(i).

Finally,
GN,S,v,t =

(
V N , EN , f[tN ]

)
(4)

Recall that GN,S,v,t
k is coloured graph GN,S,v,t with specified center k. Note that the coloring

strategy at time t does not use information of π(s), s ≥ t. The superscript v in GN,S,v,t

indicates that law of GN,S,v,t is induced by v·(·|·). Without ambiguity, we write π(t) for
π([tN ]).

Clearly, GN,S,v,t, t ∈ [0, 1], induces a natural empirical process, LGN,S,v,t

d , t ∈ [0, 1].

We sometimes write LGN,S,v,·

d′ to denote stochastic process LGN,S,v,t
, t ∈ [0, 1]. The control

problem is to minimize the following cost by choosing v,

cost(v) = E

[∫ 1

0

R
(
vt

(
·
∣∣GN,S,v,t

π(t)

) ∥∥∥ρ
)

dt + F
(
LS

d

)]
(5)

where R(µ||ρ) is Kullback-Leibler distance between µ, ρ.
The optimal strategy is actually conditional probability. So the optimal strategy colour

is a vertex π(i) at time i/N by a distribution on S depending on the current state of the
whole graph GN,S,v,i/N . However, it is reasonable to conjecture that local strategy can
approximate performance of the optimal strategy. i.e.,

Vd =
{
v : [0, 1] →

(
GS

d → P(S)
)
, i.e., vt

(
·
∣∣GS

c,d

)
∈ P(S).

(
∀GS

c,d

)
vt

(
·
∣∣GS

c,d

)
is (6)

piecewise continuous wrt t, and has finitely many discontinuity point.
}

The strategy in Vd′ is such a strategy that it colours a vertex with distribution depending
on current local coloured subgraph GN,S,v,t

π(t),d . We also write vd,· to denote such local strategy

as a stochastic process vd,t, t ∈ [0, 1], and write vd,t to denote the strategy at time t which
is a (random) function vd,t : GS

d → P(S). It is reasonable to conjecture,

inf
vd,·∈Vd,d∈ω

cost(v) = inf
v

cost(v) (7)

To verify Equation (7), we can show that for any ε > 0, there exists sufficiently large
M for all N > M , the optimal strategy v∗ for colouring GN is closed (within distance ϵ
by certain metric) to some vd′,· ∈ Vd′ on a small (but constant) probability event, and the
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performance is close to the optimal performance. Using weak convergence result 4.1, we

are able to show that on that small probability event, as N → ∞, LG
N,S,vd′,·,·

d approaches to

a fixed orbit, L
∞,S,vd′,·,·
d . Therefore, the performance of vd′,· is always close to performance

of the optimal strategy v∗; since LG
N,S,vd′,·,·

d approaches to L
∞,S,vd′,·,·
d ,

inf
v

cost(v) = inf
d′,vd′,·∈Vd′ ,L

∞,S,vd′,·,1
d =LS

d

{∫ 1

0

E
GS

c,d∼L
∞,S,vd′,·,t

[
R

(
vt

(
·
∣∣GS

c,d

)
||ρ

)]
dt + F

(
LS

d

)}
(8)

In this paper, we establish the weak convergence result. i.e., if v, vd,· are close enough,

then the empirical process LGN,S,v,·

d0
, LG

N,S,vd,·,·

d0
are also close.

4. Main Result. Our weak convergence result applies on graph that is slightly inter-
active. To characterize interactiveness of a graph, we need the following notions. For a
graph GN , a set of vertex A, let

∂kA =
{

i ∈ GN : dGN

(i, A) ≤ k
}

, ∂k1,k2A =
{

i ∈ GN : k1 ≤ dGN

(i, A) ≤ k2

}
i.e., the neighbor of A that is of distance less than k to A. And for a sequence of graph,
GN , let

Nk = max
N,c∈V N

{|∂k{c}|}, Dk = max
N,c∈V N

{|∂k{c} − ∂k−1{c}|},

Dk1,k2 = max
N,c∈V N

{|∂k2{c} − ∂k1{c}|} (9)

Fast growing Nk, Dk wrt k clearly means being more interactive. Our main result is as
follows.

Theorem 4.1. Let GN be a sequence of convergent directed graph, i.e., for every d′ there

exists L∞
d′ s.t., lim

N→∞
LGN

d′ = L∞
d′ . Let vd,· ∈ Vd, v be such that, (∀ω, t)

∥∥∥v
(
|GN,S,v,t

)
−

vd,·

(
|GN,S,v,t

π(t),d

)∥∥∥
1
≤ ϵ.

If there exists 0 = t0 < t1 < · · · < tK = 1 − ε, let δk = tk+1 − tk for k ≤ K − 1 s.t.,
(∀k ≤ K − 1)δkDd0+(K−k)d+1,d0+(K−k+1)d ≤ ε.

Then we have, for some function C(·), lim
ε→0

C(ε) = some universal constant,

lim
N→∞

sup
t∈[0,1]

∥∥∥LGN,S,v,t

d0
− LG

N,S,vd,·,t

d0

∥∥∥
1

≤ D2εNd0 +
∑

j≤K−1

C(ε)

ε
δ2
j Dd0+(K−j)d+1,d0+(K−j+1)dDd0+(K−j−1)d+1,d0+(K−j)d

+ ϵδjNd0+(K−j)d (10)

From Theorem 4.1 we are able to derive condition on graph law ensuring convergence

of empirical distribution, LG
N,S,vd,· ,·

d0
, for all local coloring strategy.

Corollary 4.1. Let GN be a sequence of convergent directed graph, i.e., for any d′ there
exists some L∞

d′ ∈ P
(
GS

d′

)
, (∀d′ ∈ ω) lim

N→∞
LGN

d′ = L∞
d′ .

Let Dk, Nk be defined as (9) for GN . Let Dk = max
i≤k

{Di}, Dk1,k2 = max
i≤k1

{Di,i+k2−k1}.

Suppose, for all d, d0 ∈ ω
∞∑
i=0

1

D
2
d0+id+1,d0+(i+1)d

= ∞.
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Then we have, for any local coloring strategy vd,·, any d0 ∈ ω, the empirical process

sequence LG
N,S,vd,·,·

d0
converges, i.e., there exists L

∞,S,vd,·,·
d0

, s.t.,

lim
N→∞

LG
N,S,vd,·,·

d0
→D L

∞,S,vd,·,·
d0

(11)

Furthermore, L
∞,S,vd,·,·
d0

is continuous in vd,·.

The proof is simple, simply let δi = O
(
1/D

2

d0+(K−i)d+1,d0+(K−i+1)d

)
.

5. Proof of Theorem 4.1. The proof is not hard but tedious. Within each time seg-
ment, [tk, tk + δk), and for every d′′, the coloring strategy v, vd,·, each induces a transition
probability on space GS

d′′ . To define such transition probability, for t < t′, GS
c,d′ , G

′S
c,d′′ , let,

LGN ,v,[t,t′)
(
GS

c,d′ , G
′S
c,d′′

)
=

∣∣∣{i ∈ V N : GN,S,v,t
i,d′

∼= GS
c,d′ ∧ GN,S,v,t′

i,d′′
∼= G′S

c,d′′

}∣∣∣
|V N |

(12)

For a fixed GN,S,v,t
i,d′ , the probability GN,S,v,t

i,d′′ transferred to G′N,S,v,t′

i,d′′ at time t′ is induced

by updating path chosen by π, and coloring strategy v. We write Lv,t
d′′ , L

vd,·,t
d′′ for LGN,S,v,t

d′′ ,

LG
N,S,vd,·,t

d′′ . Theorem 4.1 is due to spread of difference between Lv,t′ , Lvd,·,t
′
during [tk, tk +

δk)) as Lemma 5.1 illustrates.

Lemma 5.1.

• Given d′′ ≥ d, GN , δ > 0 s.t. δDd′′+1,d′′+d, δDd′′−d+1,d′′ ≤ ε << 1; and suppose
t + δ ≤ ε;

• Let vd,· ∈ Vd, v be such that, (∀ω, t)
∥∥∥v

(
|GN,S,v,t

)
− vd,·

(
|GN,S,v,t

π(t),d

)∥∥∥
1
≤ ϵ

Then we have, for some function C(·), lim
ε→0

C(ε) = some universal constant,

lim
N→∞

∥∥∥LGN,S,v,t+δ

d′′ − LG
N,S,vd,·,t+δ

d′′

∥∥∥
1
≤ D

∥∥∥LGN,S,v,t

d′′+d − LG
N,S,vd,·,t

d′′+d

∥∥∥
1
+ ϵδNd′′

+
C(ε)

ε
δ2Dd′′+1,d′′+dDd′′−d+1,d′′ (13)

Lemma 5.1 clearly implies Theorem 4.1.

5.1. Proof of Lemma 5.1. We begin by analyzing the transition probability induced
by π, v.

Definition 5.1. For i ∈ V N , let path(i, d′, [t, t′)) denote the vertex sequence within dis-
tance d′ to i, chosen by π during [t, t′) with time point recorded, i.e.,

path(i, d′, [t, t′)) = (n1, τ1) × (n2, τ2) × · · · × (nl, τl) (14)

where {n1, · · · , nl} = {j ∈ ∂d′{i} : ∃τ ∈ [t, t′), π(τ) = j}, t ≤ τ1 < τ2 < · · · < τl < t′,
τj = inf{τ : π(τ) = nj}. We write PATH

(
GS

c,d′

)
for the path space of GS

c,d′, PATH
(
GS

d′

)
for union of path space of GS

c,d′ ∈ GS
d′.

When no ambiguous is made, we always omit GS
c,d′ and write PATH instead. We

write θ
(
GS

c,d′

)
= G′S

c′,d′ to denote θ is an isomorphism between GS
c,d′ , G′S

c′,d′ . Note that
an isomorphism between two graphs also induces an isomorphism between path space
between two graphs, i.e., θ((n1, τ1) × · · · × (nl, τl)) = (θ(n1), τ1) × · · · × (θ(nl), τl).

The coloring process on GN within time [t, t′) induces nature random measure on GS
d′ ×

PATH
(
GS

d′

)
× GS

d′′ , with d′′ ≤ d′.
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Definition 5.2. For, any Pa ⊆ PATH, GN,S,

LGN,S ,v,[t,t′)
(
GS

c,d′ , Pa,GS
c,d′′

)
=

∣∣∣{i ∈ V N : ∃θ, θ
(
GS

c,d′

)
= GN,S,v,t

i,d′ ∧ θ−1(path(i, d′, [t, t′))) ∈ Pa ∧ GN,S,v,t
i,d′′

∼= GS
c,d′′

}∣∣∣
|V N |

(15)

LGN,S ,v,[t,t′)
(
GS

c,d′ , Pa
)

=

{
i ∈ V N : ∃θ, θ

(
GS

c,d′

)
= GN,S,v,t

i,d′ ∧ θ−1(path(i, d′, [t, t′))) ∈ Pa
}

|V N |
(16)

When no ambiguity is made, we write Lv,[t,t′), Lvd,·,[t,t
′) for LGN,S ,v,[t,t′), LGN,S ,vd,·,[t,t

′).
By definition,∥∥∥Lv,t+δ

d′′ − L
vd,·,t+δ

d′′

∥∥∥
1

=

∫
GS

d′′

∣∣∣∣ ∫
GS

d′′+d
×PATH

[
Lv,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)
−Lvd,·,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)] ∣∣∣∣ (17)

For every GS
c,d′′+2d′ , let

PATH1

(
GS

c,d′′+d

)
=

{
path ∈ PATH

(
GS

c,d′′+d

)
: path

∩
∂d′′+1,d′′+d{c} = ∅

}
PATH2

(
GS

c,d′′+d

)
=

{
path ∈ PATH

(
GS

c,d′′+d

)
: path

∩
∂d′′−d+1,d′′{c} = ∅

}
By slightly abuse notations, we write GS

d′′ × PATH1 to denote
{(

GS
c,d′′ ∈ GS

c,d′′ , path
)

:

path ∈ PATH1

(
GS

c,d′′

)}
, etc.

Clearly,∫
GS

d′′

∣∣∣∣ ∫
GS

d′′+d
×PATH

[
Lv,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)
−Lvd,·,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)] ∣∣∣∣
≤

∫
GS

d′′

∣∣∣∣ ∫
GS

d′′+d
×PATH1

[
Lv,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)
−Lvd,·,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)] ∣∣∣∣
+

∫
GS

d′′

∣∣∣∣ ∫
GS

d′′+d
×PATH2

[
Lv,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)
−Lvd,·,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)] ∣∣∣∣
+

∫
GS

d′′

∣∣∣∣ ∫
GS

d′′+d
×(PATH−PATH1−PATH2)

[
Lv,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)
−Lvd,·,[t,t+δ)

(
dGS

c1,d′′+d, dpath, dGS
c2,d′′

)] ∣∣∣∣
= I + II + III (18)
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We claim that, lim
N→∞

I + II ≤D
∥∥∥Lv,t

d′′+d − L
vd,·,t
d′′+d

∥∥∥
1
+ ϵδNd′′ and

lim
N→∞

III ≤D C(ε)

ε
δ2Dd′′+d,d′′+1Dd′′,d′′−d+1

where lim
ε→0

C(ε) = some universal constant.

Claim. lim
N→∞

III ≤D C(ε)
ε

δ2Dd′′+d,d′′+1Dd′′,d′′−d+1

It is easy to see,

III ≤
∫
GS

d′′+d
×(PATH−PATH1−PATH2)

Lv,[t,t+δ)
(
dGS

c1,d′′+d, dpath
)

+

∫
GS

d′′+d
×(PATH−PATH1−PATH2)

Lvd,·,[t,t+δ)
(
dGS

c1,d′′+d, dpath
)

(19)

Note that, since π is independent from GN,S,v,t, for any PATH ′ ⊆ PATH, any coloring
strategy v′, any d′, d′′, let

Lv′,[t,t+δ)
(
path|GS

c,d′′+d′

)
=

Lv′,[t,t+δ)
(
GS

c,d′′+d′ , path
)

Lv′,t
(
GS

c,d′′+d′

) (20)

we have,

Lv,[t,t+δ)
(
path|GS

c,d′′+d

)
=D Lv,[t,t+δ)(path|Gc,d′′+d) (21)

i.e., Lv,[t,t+δ)
(
path|GS

c,d′′+d

)
depends only on graph structure of GS

c,d′′+d and path and

is independent of v, state structure of GS
c,d′′+d. Furthermore, according to condition in

Lemma 5.1, t + δ ≤ ε << 1, we have, for any GS
c,d′′+d,

lim
N→∞

∫
PATH−PATH1−PATH2

Lv,[t,t+δ)
(
dpath|GS

c,d′′+d

)
≤D C(ε)

ε
δ2Dd′′+d,d′′+1Dd′′,d′′−d+1

(22)

lim
N→∞

∫
PATH−PATH1−PATH2

Lvd,·,[t,t+δ)
(
dpath|GS

c,d′′+d

)
≤D C(ε)

ε
δ2Dd′′+d,d′′+1Dd′′,d′′−d+1

(23)

Thus the claim follows.

Claim. lim
N→

I + II ≤D
∥∥∥Lv,t

d′′+d − L
vd,·,t
d′′+d

∥∥∥
1
+ ϵδNd′′

Similar to (20), for any Pa ⊆ PATH, let

Lv,[t,t′)
(
G′S

c,d′′|G′S
c,d′′+d, Pa

)
=

Lv,[t,t′)
(
GS

c,d′′+d, Pa, GS
c,d′′

)
Lv,[t,t′)

(
GS

c,d′′+d, Pa
) (24)

It is easy to see that, for a certain path, path, we can define a nature conditional
probability, Lv,[t,t′)

(
G′S

c,d′′|GS
c,d′′+d, path

)
.

The key point is for i, s.t. path(i, d′′ + d, [t, t + δ)) ∈ PATH1 ∪ PATH2, the coloring
distribution for Xni

in ∂d′′{i} during [t, t+ δ) is not affected by state of Xnj
in ∂d′′,d′′+d{i}

assigned during [t, t + δ). By induction on |path ∩ ∂d′′{i}| we have,∫
GS

d′′

∣∣∣Lv,[t,t′)
(
G′S

c,d′′|GS
c,d′′+d, path

)
− Lvd,·,[t,t

′)
(
G′S

c,d′′|GS
c,d′′+d, path

)∣∣∣ ≤ |path ∩ ∂d′′{c}|ϵ

(25)
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Now using (25), we have,

II ≤
∫
GS

d′′+d
×PATH2

Lv,[t,t+δ)
(
dGS

c1,d′′+d, dpath
)
· |path ∩ ∂d′′−d{c1}| · ϵ

+

∫
GS

d′′+d
×PATH2

∣∣Lv,[t,t+δ)
(
dGS

c1,d′′+d, dpath
)
− Lvd,[t,t+δ)

(
dGS

c1,d′′+d, dpath
)∣∣

= II1 + II2 (26)

In exactly the same way, we also have,

I ≤
∫
GS

d′′+d
×PATH1

Lv,[t,t+δ)
(
dGS

c1,d′′+d, dpath
)
· |path ∩ ∂d′′{c1}| · ϵ

+

∫
GS

d′′+d
×PATH1

∣∣Lv,[t,t+δ)
(
dGS

c1,d′′+d, dpath
)
− Lvd,[t,t+δ)

(
dGS

c1,d′′+d, dpath
)∣∣

= I1 + I2 (27)

Clearly,

I2 + II2 ≤
∫
GS

d′′+d
×PATH

∣∣Lv,t
(
dGS

c1,d′′+d

)
Lv,[t,t+δ)(dpath|GS

c1,d′′+d)

− Lvd,t
(
dGS

c1,d′′+d

)
Lvd,·,[t,t+δ)

(
dpath|GS

c1,d′′+d

) ∣∣ ≤ ∥∥∥Lv,t
d′′+d − L

vd,·,t
d′′+d

∥∥∥
1

(28)

On the other hand,

I1 + II1 ≤
∫
GS

d′′+d
×PATH

Lv,t
(
dGS

c1,d′′+d

)
Lv,[t,t+δ)

(
dpath|GS

c1,d′′+d

)
· |path ∩ ∂d′′{c1}| · ϵ

≤ DϵδNd′′ (29)

6. Conclusion. In this paper, we proved the weak convergence property for empirical
process of subgraph with color controlled by local coloring strategy under the condition
that the graph is not so interactive (see condition of Theorem 4.1). We left the problem
of whether this weak convergence property holds for polynomial graph. We also pointed
out the application of this weak convergence theorem on establishing LDP for probability
model induced by graph.
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