
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 8, August 2016 pp. 1931–1936

STATE ESTIMATION FOR SCALAR LINEAR SYSTEMS
WITH THE DATA-RATE LIMITATION

Qingquan Liu

College of Equipment Engineering
Shenyang Ligong University

No. 6, Nanping Center Road, Hunnan New District, Shenyang 110159, P. R. China
lqqneu@163.com

Received December 2015; accepted March 2016

Abstract. This paper investigates the state estimation problem for scalar linear con-
tinuous time-invariant systems over a stationary memoryless uncertain digital channel
with the data-rate limitation. In particular, a coder-decoder pair is constructed to ensure
observability of the system employing a constant data rate provided by such a channel.
The conditions on the constant data rate for observability are derived, and a lower bound
on the constant data rate is given. Furthermore, it is shown in our results that the dis-
turbances have important effect on observability in the case with the data-rate limitation.
An illustrative example is given to demonstrate the effectiveness of the lower bound given.
Keywords: State estimation, Constant data rate, Observability, Scalar linear systems

1. Introduction. In many engineering applications, control systems employ multiple
sensors and actuators communicating over digital channels. In this framework, the data
rate theorem refers to the smallest feedback data rate above which an unstable dynamical
system can be stabilized [1]. The problem of state estimation for networked control systems
has received increasing interest in recent years [2, 3].

This result was generalized to different notions of stabilization and system models.
The research on Gaussian linear systems was addressed in [4]. Information theory was
employed in control systems as a powerful conceptual aid, which extended existing fun-
damental limitations of feedback systems, and was used to derive necessary and sufficient
conditions for robust stabilization of uncertain linear systems, Markov jump linear sys-
tems and unstructured uncertain systems [5-7]. Control under communication constraints
inevitably suffers signal transmission delay, data packet dropout and measurement quan-
tization which might be potential sources of instability and poor performance of control
systems [8]. [9] investigated the quantized feedback control problem for stochastic time-
invariant linear control systems. A predictive control policy under data-rate constraints
was proposed to stabilize the unstable plant in the mean square sense. [10] addressed
LQ (linear quadratic) control of MIMO (multi-input multi-output), discrete-time linear
systems, and gave the inherent tradeoffs between LQ cost and data rates. In [11], a
quantized-observer based encoding-decoding scheme was designed, which integrated the
state observation with encoding-decoding. [12] addressed some of the challenging issues on
moving horizon state estimation for networked control systems in the presence of multiple
packet dropouts.

In the literature, the data rate of the channel was defined as a time-varying variable. In
the existing results, the lower bounds on the data rate for observability were suitable for
the average data rate. However, control performance should be guaranteed at each time
step. For the case with the time-varying data rate, good performance can be achieved
only in an average or expected sense. The chief difference in our case is that, the data
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rate is an invariant constant, and control performance can be guaranteed at each time
step.

This paper is concerned with the state estimation problem for scalar linear continuous
time-invariant systems over a stationary memoryless uncertain digital channel with the
data-rate limitation. Our purpose here is to construct a coder-decoder pair which can
ensure observability of the system employing a constant data rate provided by such a
channel. Our work here differs in that we present a lower bound on the constant data
rate for observability of the system. Furthermore, we also examine the role that the
disturbances have on state estimation in the case with the data-rate limitation.

The remainder of this paper is organized as follows: Section 2 introduces problem
formulation; Section 3 deals with state estimation problem under the data-rate limitation;
the results of numerical simulation are presented in Section 4; conclusions are stated in
Section 5.

2. Problem Formulation. Consider the following linear continuous time-invariant sys-
tem

ẋ(t) = ax(t) + w(t), (1)

where x(t) ∈ R is the state process, and w(t) ∈ Rm is the disturbance, assumed to be
Lebesgue-measurable. The parameter a is a known constant. Let Bl(z) denote the set
{x : |x − z| ≤ l} centered at z. The initial state x(0) and w(t) are bounded, uncertain
variables satisfying x(0) ∈ Bϕ0(0) and w(t) ∈ Bϕw(0), respectively, where ϕ0 and ϕw are
two known constants.

In this paper, we assume that the information on the plant state that is provided by
sensor data, would be encoded and transmitted over a stationary memoryless uncertain
digital channel without data dropout and time delay. The data rate R provided by such
a channel is an invariant constant. Here, we focus on the role that the data rate has on
the state estimation problem. Let h denote the uniform sampling interval and k is an
integer. The state of the plant evolves in discrete time according to

x(k + 1) = λx(k) + w(k), (2)

where we set x(k) := x(kh), w(k) := w(kh), and λ := eah.
Let x̂(k) and e(k) denote the state estimate and the estimation error, respectively. We

define the estimation error as

e(k) := x(k) − x̂(k).

The state x(k) is causally encoded via an operator Θ as

α(k) = Θ(k, x(0), x(1), · · · , x(k)),

where the codeword α(k) is transmitted over such a channel, and decoded via an operator
Υ as

x̂(k) = Υ(k, α̂(0), α̂(1), · · · , α̂(k)),

where α̂(k) denotes the received symbol at the decoder. Then, one can compute the state
estimate x̂(k) at the decoder.

The main task in this paper is to present the condition on the data rate for observability
of the system (1). Here, we want to give a lower bound on the data rate, which can ensure
observability of the system (1) in the sense

lim supk→∞ |e(k)| < ∞

using the finite, constant data rate provided by the communication channel.
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3. Conditions on the Constant Data Rate for Observability. This section deals
with the state estimation problem for scalar linear time-invariant systems over a stationary
memoryless uncertain digital channel with a constant data rate.

It is shown in our results that, the disturbances have important effect on observability
of the system (1). Then, we first consider the case without the disturbances. In the case
with λ < 1,

lim supk→∞ |e(k)| < ∞
holds though no information on the plant state is sent to the decoder. Thus, we examine
the case with λ ≥ 1, and give the following result.

Theorem 3.1. Consider the system (1) without the disturbances. The initial x(0) is a
bounded, uncertain variable with the range Bϕ0(0). Assume that λ = eah ≥ 1 holds. The
system (1) is asymptotically observable in the sense

lim supk→∞ |e(k)| = 0

if the constant data rate R provided by the communication channel satisfies the following
condition:

R > ⌈a log2 e⌉ (bits/s),

where ⌈·⌉ represents the ceil function, and is defined as ⌈x⌉ := min{k ∈ Z : k > x}.

Proof: Notice that, the initial x(0) ∈ Bϕ0(0) = [−ϕ0, ϕ0] holds. Then, we may set

x̂(0) = 0,

e(0) = x(0) − x̂(0) ∈ Bϕ0(0) = [−ϕ0, ϕ0]. (3)

For any time k, we assume that

x(k) ∈ Bl(k)(c(k)) = [−l(k) + c(k), l(k) + c(k)],

x̂(k) = c(k),

e(k) = x(k) − x̂(k) ∈ Bl(k)(0) = [−l(k), l(k)], (4)

where l(k) and c(k) denote the radius and midpoint of the range of x(k), respectively.
At time k+1, the range of x(k+1) and e(k+1) would grow by λ because of the system

dynamics. Here, the value of the plant state is quantized, encoded, and transmitted over
a digital communication channel in order to make the estimation error reduce. Thus, we
divide the range [−l(k) + c(k), l(k) + c(k)] into d equal intervals. Clearly, x(k) falls into
one of d equal intervals. The d indexes corresponding to the d equal intervals are encoded,
and converted into the d codewords of R bits. The codeword corresponding to the interval
that x(k) falls into is sent to the decoder. Then, the decoder may know the interval that
x(k) falls into, and compute the estimation error.

It follows from [13] that the data rate R must satisfy the following inequality:

R ≥ ⌈log2 d⌉ (bits/sample). (5)

At time k + 1, it follows that

x(k + 1) ∈ Bl(k+1)(c(k + 1)) = [−l(k + 1) + c(k + 1), l(k + 1) + c(k + 1)],

x̂(k + 1) = c(k + 1),

e(k + 1) = x(k + 1) − x̂(k + 1) ∈ Bl(k+1)(0) = [−l(k + 1), l(k + 1)],

where

l(k + 1) =
λ

d
l(k). (6)

Combined with Equations (3), (4) and (6), this implies that

l(k) =

(
λ

d

)k

ϕ0. (7)
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If assume that
d > λ = eah (8)

holds, it follows that
limk→∞ l(k) = 0.

It leads to
lim supk→∞ |e(k)| = 0.

Substitute (8) into (5) and we have

R ≥ ⌈log2 d⌉ > ⌈ah log2 e⌉ (bits/sample).

Namely, this means that
R > ⌈a log2 e⌉ (bits/s). (9)

Thus, the system (1) is asymptotically observable if Inequality (9) holds. �
We next address the state estimation problem for the system (1) with the disturbances,

and further examine the role that the disturbances have on state estimation under the
data-rate limitation.

Then, we give the following result.

Theorem 3.2. Consider the system (1) with the disturbances. The initial state x(0)
and w(t) are bounded, uncertain variables satisfying x(0) ∈ Bϕ0(0) and w(t) ∈ Bϕw(0),
respectively. Assume that λ = eah ≥ 1 holds. The system (1) is observable in the sense

lim supk→∞ |e(k)| < ∞
if the constant data rate R provided by the communication channel satisfies the following
condition:

R > ⌈a log2 e⌉ (bits/s).

Proof: Similarly, we have

e(0) = x(0) − x̂(0) ∈ Bϕ0(0) = [−ϕ0, ϕ0], (10)

w(k) ∈ Bϕw(0) = [−ϕw, ϕw]. (11)

Using the same techniques as in the proof of Theorem 3.1, we can show that at time
k + 1, it follows that

x(k) ∈ Bl(k)(c(k)) = [−l(k) + c(k), l(k) + c(k)],

x̂(k) = c(k),

e(k) = x(k) − x̂(k) ∈ Bl(k)(0) = [−l(k), l(k)],

where

l(k) =

(
λ

d

)k

ϕ0 +

[
1 +

λ

d
+ · · · +

(
λ

d

)k−1
]

ϕw.

If assume that
d > λ = eah (12)

holds, it follows that

lim
k→∞

l(k) =
1

1 − λ
d

ϕw.

It leads to

lim sup
k→∞

|e(k)| =
1

1 − λ
d

ϕw < ∞.

Substitute (12) into (5) and we have

R > ⌈a log2 e⌉ (bits/s). (13)

Thus, the system (1) is observable if Inequality (13) holds. �



ICIC EXPRESS LETTERS, VOL.10, NO.8, 2016 1935

Remark 3.1. For the system (1) without the disturbances, we may obtain

lim supk→∞ e(k) = 0.

Conversely, for the system (1) with the disturbances, we have

lim sup
k→∞

e(k) =
1

1 − λ
d

ϕw < ∞.

Thus, the disturbances have important effect on state estimation of networked control
systems. It is possible to ensure observability of the system (1) in spite of the disturbances
if the data rate is larger than the lower bound given in our results.

4. Numerical Example. In this section, we give a numerical example to illustrate the
effectiveness of the lower bound on the data rate given in our results. We consider a
discrete-time control system

x(k + 1) = 4.5x(k) + w(k).

Let the initial x(0) ∈ B5(0) and w(k) ∈ B1(0). It follows from Theorem 3.1 and
Theorem 3.2 that R > 2.17 (bits/sample). Here, we set R = 3 (bits/sample). For the
case without the disturbances, the corresponding simulation is given in Figure 1. It is
shown that the system is asymptotically observable. For the case with the disturbances,
the corresponding simulation is given in Figure 2. It states that the estimation error is
bounded. Boundability is a very weak notion of observability.
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Figure 1. The estimation error responses in the case without the disturbances

5. Conclusions. In this paper, we addressed the state estimation problem for scalar
linear continuous time-invariant systems. The information of the plant state was encoded
and transmitted over a stationary memoryless uncertain digital channel with the limited
data-rate. A coder-decoder pair was constructed to ensure observability of the system
employing a constant data rate provided by such a channel. We derived the conditions
on the constant data rate for observability. The simulation results have illustrated the
effectiveness of the lower bound given. The study of nonlinear system with the limited
data rate will be our future work.
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Figure 2. The estimation error responses in the case with the disturbances
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