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Abstract. Fuzzy modus ponens (FMP) and the fuzzy modus tollens (FMT) are two
important models of fuzzy inference. In this paper, we extend the FMP and FMT based
on linguistic truth-valued lattice implication algebra aiming to solve the approximate rea-
soning problem with linguistic values. We propose the form of linguistic modus ponens
(LMP) and linguistic modus tollens (LMT). The similarity-based algorithms are obtained
to make the LMP and LMT work and some essential properties are discussed.
Keywords: Linguistic modus ponens, Linguistic modus tollens, Approximate reasoning,
Linguistic truth-valued lattice

1. Introduction. To make reasoning with the linguistic information which is always
imprecise and imperfect, many approaches have been presented. Computing with words
(CWW) methodology based on fuzzy theory proposed by Zadeh [1,2] has played a key
role in recent years. The basic models of deductive processes with fuzzy sets are the
fuzzy modus ponens (FMP) and the fuzzy modus tollens (FMT) [3]. The most popular
fundamental patterns are the composition rule of inference (CRI) [4] and the Triple I
method [5] in approximate reasoning problem with fuzziness. M. X. Luo and K. Zhang
extended the Triple I method by proposing a new full implication algorithm based on
interval-valued fuzzy inference [6]. B. K. Zhou et al. extended the CRI with quintuple
implication principle [7].

The fuzzy theory processes linguistic information with a quantitative way with a mem-
bership function while linguistic information is always qualitative and both comparable
and incomparable. Lattice implication algebra (LIA) proposed by Y. Xu et al. focused on
the incomparability in linguistic terms besides fuzziness [8]. Lattice implication algebra
structure can imitate the uncertain and both comparable and incomparable character of
the linguistic values in natural language, and therefore attracts many researchers studying
in varied direction, such as logic system [9], resolution automated [10], and approximate
reasoning [11].

Despite the important role that MP and MT played in the approximate reasoning,
there is no research on MP and MT with linguistic values. In the present work, we study
the MP and MT based on the linguistic truth-valued lattice implication algebra, which
is called linguistic modus ponens (LMP) and linguistic modus tollens (LMT). It is one of
the essential contents in linguistic truth-valued lattice logic system, and provides a way
to make reasoning with the linguistic values for people who always use natural language
when they make decision or assessment.
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The paper is organized as follows. In Section 2, we briefly review the linguistic valued
lattice implication algebra and show the 3D mesh of implication operator. In Section 3,
we propose the linguistic modus ponens (LMP) and linguistic modus tollens (LMT) based
on linguistic truth-valued lattice implication algebra and discuss some properties of them.
In Section 4, some conclusions are organized.

2. Preliminaries. Let (L, ∨, ∧, O, I) be a bounded lattice with universal boundaries
O (the least element) and I (the greatest element) respectively, and “ ′ ” be an order-
reversing involution. For any x, y, z ∈ L, if mapping →: L × L → L satisfies:

(I1) : x → (y → z) = y → (x → z);

(I2) : x → x = I;

(I3) : x → y = y′ → x′;

(I4) : x → y = y → x = I implies x = y;

(I5) : (x → y) → y = (y → x) → x;

(I6) : (x ∨ y) → z = (x → z) ∧ (y → z);

(I7) : (x ∧ y) → z = (x → z) ∨ (y → z);

then (L, ∨, ∧, ′, →, O, I) is a lattice implication algebra (LIA for short).
In linguistic hedges set H = {hi | i = 0, 1, 2, 3, 4}, where h0 means “slightly”, h1 means

“somewhat”, h2 means “exactly”, h3 means “very” and h4 means “absolutely”. Evaluating
values set is {c1, c2}, where c1 means “incredibility” and c2 means “credibility”. As for
ten-element lattice implication algebra (V , ∨, ∧, →), the operation “∨” and “∧” are
shown in Figure 1. And the operation “ ′ ” is (hi, c1)

′ = (hi, c2), (hi, c2)
′ = (hi, c1).

Figure 1. The Hasse diagram of L5 × L2

The operation “→” is as the following (Figure 2).
(hi, c2) → (hj, c1) = (hmax{0,i+j−4}, c1)

(hi, c1) → (hj, c2) = (hmin{4,i+j}, c2)

(hi, c2) → (hj, c2) = (hmin{4,4−i+j}, c2)

(hi, c1) → (hj, c1) = (hmin{4,4−j+i}, c2).

Then (V , ∨, ∧, →) is ten linguistic-valued credibility factors LIA.

3. Linguistic Modus Ponens (LMP) and Linguistic Modus tollens (LMT). As
one of the basic inference models of fuzzy reasoning, FMP and FMT have the following
form:

A → B
A∗

B∗
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(a) (hi, c2) → (hj , c1) (b) (hi, c1) → (hj , c2)

(c) (hi, c2) → (hj , c2) (d) (hi, c1) → (hj , c1)

Figure 2. The 3D mesh of “ → ”

and
A → B

B∗

A∗ .

For any (hi, ca), (hj, cb), (hk, cd) and (hl, ce) ∈ LV (n×2), i, j, k, l ∈ {0, 1, 2, . . . , n}, a, b, d, e ∈
{1, 2}, the LMP form is similar as FMP, represented as

(hi, ca) → (hj, cb)
(hk, cd)

(hl, ce)
.

Now the (hi, ca), (hj, cb), and (hk, cd) are given, and then we obtain the similarity-based
operator to get (hl, ce).

If ca = cb = cd, then

l = (j − i + k) ∧ n ∨ 0, ce = cb. (1)

If ca = cb ̸= cd, then

l = (i − j + k) ∧ n ∨ 0, ce = cd. (2)

If ca = cd ̸= cb, then

l = (i + j − k) ∧ n ∨ 0, ce = cb. (3)

If ca ̸= cb = cd, then

l = (k + i + j + 1 − n) ∧ n ∨ 0, ce = cd. (4)
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As to the LMT, it has the similar form with FMT.

(hi, ca) → (hj, cb)
(hl, ce)

(hk, cd)

The operator to get (hk, cd) can be obtained according to LMP easily. For example, if
ca = cb = ce, then we obtain

k = (i − j + l) ∧ n ∨ 0, cd = ca (5)

from Equation (1).
In the same way, the equations are given in other cases.
If ca = cb ̸= ce, then

k = (j − i + l) ∧ n ∨ 0, cd = ce (6)

from Equation (2).
If ca ̸= cb = ce, then

k = (i + j − l) ∧ n ∨ 0, cd = ca (7)

from Equation (3).
If ca = ce ̸= cb, then

k = (l + i + j + 1 − n) ∧ n ∨ 0, cd = ce (8)

from Equation (4).

Theorem 3.1. For any (hi, ca), (hj, cb), (hk, cd) and (hl, ce) ∈ LV (n×2), if (hk, cd) =
(hi, ca), then (hl, ce) = (hj, cb), where (hl, ce) is got from LMP as below.

(hi, ca) → (hj, cb)
(hk, cd)

(hl, ce)
.

Proof: If (hk, cd) = (hi, ca), then hk = hi, cd = ca. Two cases satisfy cd = ca when
ca = cb = cd and ca = cd ̸= cb. We know k = i from hk = hi, then when ca = cb = cd,

l = (j − i + k) ∧ n ∨ 0 = j, ce = cb.

When ca = cd ̸= cb,

l = (i + j − k) ∧ n ∨ 0 = j, ce = cb.

Hence, hl = hj, ce = cb. That is to say, (hl, ce) = (hj, cb).

Corollary 3.1. For any (hi, ca), (hj, cb), (hk, cd) and (hl, ce) ∈ LV (n×2), if (hl, ce) =
(hj, cb), then (hk, cd) = (hi, ca), where (hk, cd) is got from LMT as below.

(hi, ca) → (hj, cb)
(hl, ce)

(hk, cd)
.

Proof: If (hl, ce) = (hj, cb), then hl = hj, ce = cb. Two cases satisfy ce = cb when
ca = cb = ce and ca ̸= cb = ce. When ca = cb = ce, we know j = l from hl = hj, then

k = (i − j + l) ∧ n ∨ 0 = i, cd = ca.

When ca ̸= cb = ce

k = (i + j − l) ∧ n ∨ 0 = i, cd = ca.

Hence, hk = hi, ca = cd. That is to say, (hk, cd) = (hi, ca).
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Theorem 3.2. For any (hi, ca), (hj, cb), (hk, cd), (hk′ , cd′), (hl, ce) and (hl′ , ce′) ∈ LV (n×2),
it is known that

(hi, ca) → (hj, cb)
(hk, cd)

(hl, ce)
,

(hi, ca) → (hj, cb)
(hk′ , cd′)

(hl′ , ce′)
.

Suppose (hi, ca), (hj, cb) are given, if (hk, cd) < (hk′ , cd′), then (hl, ce) ≤ (hl′ , ce′).
Proof: Here we discuss the case that ca = cb = 2.
When cd = 2, then cd′ = 2, k′ > k for (hk, cd) < (hk′ , cd′).

l = (j − i + k) ∧ n ∨ 0, ce = cb = 2;

l′ = (j − i + k′) ∧ n ∨ 0, ce′ = cb = 2.

Obviously, l ≤ l′, ce = ce′ . So (hl, ce) ≤ (hl′ , ce′).
When cd = 1, then cd′ = 1, k′ < k or cd′ = 2, k′ ≥ n − k. We prove it in the two cases,

respectively.
For the case that cd′ = 1, k′ < k,

l = (i − j + k) ∧ n ∨ 0, ce = cd = 1;

l′ = (i − j + k′) ∧ n ∨ 0, ce′ = cd′ = 1.

Obviously, l ≥ l′, ce = ce′ . So (hl, ce) ≤ (hl′ , ce′).
For the case that cd′ = 2, k′ ≥ n − k,

l′ = (j − i + k′) ∧ n ∨ 0,
≥ (j − i + n − k) ∧ n ∨ 0,
= (n − (i − j + k)) ∧ n ∨ 0,
≥ (n − l).

ce′ = cb = 2.

Obviously, l ≥ n − l′. So (hl, ce) ≤ (hl′ , ce′).
Other cases can be proved in the same way.

Corollary 3.2. For any (hi, ca), (hj, cb), (hk, cd), (hk′ , cd′), (hl, ce) and (hl′ , ce′) ∈ LV (n×2),
it is known that

(hi, ca) → (hj, cb)
(hl, ce)

(hk, cd)
,

(hi, ca) → (hj, cb)
(hl′ , ce′)

(hk′ , cd′)
.

Suppose (hi, ca), (hj, cb) are given, if (hl, ce) < (hl′ , ce′), then (hk, cd) ≤ (hk′ , cd′).
It can be proved in the same way with Theorem 3.2.

4. Conclusions. We extend the FMP and FMT to linguistic MP (LMP) and linguistic
MT (LMT) based on linguistic truth-valued lattice implication algebra. It processes the
linguistic information qualitatively and provides a basis method to linguistic approximate
reasoning by LMP and LMT. We will study the Triple I method in linguistic approximate
reasoning problem and discuss the performances of different reasoning methods in the
future work.
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