
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 8, August 2016 pp. 1971–1977

A CLOSED-LOOP SUPPLY CHAIN SUPERNETWORK
BASED ON DISRUPTION RISKS IN DYNAMIC ENVIRONMENT

Shasha Wang and Zhiping Wang∗

Department of Mathematics
Dalian Maritime University

No. 1, Linghai Road, Dalian 116026, P. R. China
wangshasha0425@163.com; ∗Corresponding author: wzp5006@163.com

Received December 2015; accepted March 2016

Abstract. First of all, this paper develops a 5-tiered closed-loop supply chain network
including raw material suppliers, manufacturers, retailers, demand markets and recovery
centers by using probability of risk occurrence and risk loss function to express the char-
acteristics of risk management in supply chain network. Then the decision-makers seek
profit maximum and satisfaction maximum as their optimization objectives by using the
theory of variational inequality. Specifically, a simple cyclic function is used to describe
the demand market’s seasonal demand. Finally, the model is verified reasonably by nu-
merical example.
Keywords: Disruption risks, Dynamic environment, Closed-loop supply chain, Super-
network, Variational inequalities, Projected dynamical system

1. Introduction. With the development of economic globalization and the increasing
of environmental damage and natural disasters, the disruption risk has become the most
important risk. Such risks in supply chain will lead to a variety of problems.

As the impact of the outsourcing practices, the procurement process is becoming even
more exposed to risk and disruption [1,2]. Yue and Zhang [3] discussed the risks and
impairments caused by them in shipbuilding supply chain. Xanthopoulos et al. [4] stud-
ied the disruption problem in supply channel and emphasized the importance of multi-
sourcing supply. Sardar and Lee [5] suggests an approach to quantify the border crossing
complexity and its impact on supply chain disruption risk in the global outsourcing envi-
ronment. Xu et al. [6] integrate a defender-attacker game with supply chain risk manage-
ment, and study the defender’s optimal preparation strategy. Feng et al. [7] developed
a supply chain supernetwork model with 4-tiered including suppliers, manufacturers, re-
tailers and consumers at demand market, in which the demand for product is seasonal,
and the sensitivity of demand to price is another key factor which effects consumers’ de-
mand. Moreover, the manufacturers invest the reverse distribution channel for incenting
consumers to return more used products.

In this paper, a 5-tiered closed-loop supply chain based on the probability of risk oc-
currence is developed and described. The demand markets’ demand is seasonal, so we
use a simple cosine functional form Dk to describe the demand. Specially, the probability
of risk occurrence and risk loss function are used to express the characteristics of risk
management in supply chain network. Compared with the work of Feng et al. [7], we add
the recovery centers to the decision-makers and the probability of risk occurrence and risk
loss function to the close-loop supply chain.

The rest of this paper is organized as follows. In Section 2, we analyze and optimize
behaviors of decision-makers in the model. In Section 3, we give a numerical example to
validate the model. Finally, the paper is concluded in Section 4.
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2. Objectives of the Closed-Loop Supply Chain Network Members. For simpli-
fication, we assume that there are S raw material suppliers, I manufacturers, J retailers,
K demand markets, and O recovery centers. All associated symbols and their implications
in our paper are given as follows:

Let fs(Q
1, t) denote the procurement cost of raw material supplier s at time t depending

on the vector of the raw material volume Q1 = (qsi)s=1,...,S
i=1,...,I

. qsi(t) denotes the amount

of product transacted from raw material supplier s to manufacturer i at time t; ρf
1s(t) is

the price charged for product by raw material supplier s to manufacturer i at time t. Let
C1si(qsi, t) denote the unit of transaction cost paid by supplier s.

Hence, the optimality conditions for all suppliers can be described simultaneously using
the following evolutionary variational inequality [5-7] with vector field K1 =

{
Q1∗ ∈

L2
(
[0, T ], RSI

+

)∣∣qsi(t) ≥ 0 a.e. in[0, T ],∀s, i
}

∫ T

0


∂fs(Q

1, t)

∂qf
si(t)

+
∂C1si

(
qf
si, t
)

∂qf
si(t)

− ρf∗
1s (t)

×
(
qsi(t) − q∗si(t)

) dt ≥ 0 (1)

Let rij denote the risk loss function and ε denote the probability of risk occurrence.
Denote the desirability of retailer j transacting with manufacturer i by b1ij(hij, t) and the
optimality conditions for all manufacturers following with weight value αi. Let f r

i (Q1, t)
present the procurement cost from raw materials with recovery rate βr at time t and
fu

i (Q5, t) present the procurement cost from reusable materials with recovery rate βu at

time t

(
Q5(t) = (qb

io(t)) i=1,...,I
o=1,...,O

)
. ρf

2i(t) denotes the price charged for product by manu-

facturer i to retailer j at time t. qij(t) denotes the amount of product transacted from

manufacturer i to retailer j at time t

(
Q2(t) = (qij(t)) i=1,...,I

j=1,...,J

)
. qb

io(t) denotes the amount

of product transacted from recovery center o to manufacturer i at time t. ρb
4o(t) de-

notes the price charged for product by recovery center o to manufacturer i at time t and
C2si(qsi, t) denotes the unit of transaction cost charged for product by manufacturer i to
raw material supplier s at time t. Let C1io

(
qb
io, t
)

denote the unit of transaction cost
charged for product by manufacturer i to recovery center o at time t and C1ij(qij, hij, t)
denote the unit of transaction cost charged for product by manufacturer i to retailer j at
time t. Finally, the economical costs paid by manufacturer i to retailer j are expressed
as v1ij(hij, t) depending on the degree of relationship hij.

Hence, the optimality conditions for all manufacturers can be described simultane-
ously using the following evolutionary variational inequality [5-7] with vector field K2 ={

(Q1∗, Q2∗, Q5∗, λ∗
1) ∈ L2

(
[0, T ], RSI+IJ+IO+I

+

) ∣∣qsi(t) ≥ 0, qij(t) ≥ 0, qb
io(t) ≥ 0 a.e.

in[0, T ], ∀s, i, j, k, o
}

with the LaGrange multiplier λ1(t) = (λ1i(t))i=1,...,I ,

∫ T

0

{
S∑

s=1

l∑
i=1

(
∂f r

i (Q1, t)

∂qf
si(t)

+
∂C2si(q

t
si, t)

∂qf
si(t)

+ ρf
1s(t) − βrλ1i(t)

)
×
(
qf
si(t) − qf∗

si (t)
)

+
I∑

i=1

J∑
j=1

(
∂C1ij(qij, hij, t)

∂qij(t)
− ρf

2i +
∂rij(qij, t)

∂qij(t)
× ε + λ1i(t)

)
×
(
qij(t) − q∗ij(t)

)

+
I∑

i=1

O∑
o=1

(
∂fu

i (Q5, t)

∂qio(t)
+

∂C1io(qio, t)

∂qio(t)
+ ρb

4o(t) − βuλ1i(t)

)
× (qio(t) − q∗io(t))
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+
I∑

i=1

J∑
j=1

(
∂v1ij(hij, t)

∂hij(t)
+

∂C1ij(qij, hij, t)

∂hij(t)
− αi

∂b1ij(hij, t)

∂hij(t)

)
×
(
hij(t) − h∗

ij(t)
)

+
I∑

i=1

(
βr

S∑
s=1

qf
si(t) + βu

O∑
o=1

qio(t) −
J∑

j=1

qij(t)

)
× (λ1i(t) − λ∗

1i(t))

}
dt ≥ 0 (2)

Let Cj(Q
2, t) denote the handling cost. The economical costs paid by retailer j to

manufacturer i are expressed as v2ij(hij, t) depending on the degree of relationship hij.
Also let v2jk(hjk, t) denote the economical costs between retailer j and manufacturer
i. Denote the desirability of retailer j transacting with manufacturer i by b2ij(hij, t).
b2jk(hjk, t) represent the desirability of retailer j transacting with demand market k, the
optimality conditions for all retailers following with weight value αi. C2ij(qij, hij, t): the
unit of transaction cost charged for product by retailer j to manufacturer i at time t;
C2jk(qjk, hjk, t): the unit of transaction cost charged for product by retailer j to manu-

facturer i at time t; ρf
3j(t): price charged for product by retailer j to demand market k at

time t; qjk(t): amount of product transacted from retailer j to demand market k at time

t

(
Q3(t) = (qjk) j=1,2,...,J

k=1,2,...,K

)
.

Hence, the optimality conditions for all retailers can be described simultaneously using
the following evolutionary variational inequality [5-7] with vector field K3 =

{(
Q2∗, Q3∗,

λ∗
2

)
∈ L2

(
[0, T ], RIJ+Jk+J

+

) ∣∣qij(t) ≥ 0, qjk(t) ≥ 0 a.e. in[0, T ], ∀i, j, k
}

with the LaGrange
multiplier λ2(t) = (λ2j(t))j=1,...,J ,

∫ T

0

{
I∑

i=1

J∑
j=1

(
∂C2ij(qij, hij, t)

∂qjk(t)
− ρf

3j(t) + λ2j(t)

)
×
(
qjk(t) − q∗jk(t)

)

+
J∑

j=1

K∑
k=1

(
∂C2jk(qjk, hjk, t)

∂qjk(t)
− ρf

3j(t) + λ2j(t)

)
×
(
qjk(t) − q∗jk(t)

)

+
I∑

i=1

J∑
j=1

(
∂v2ij(hij, t)

∂hij(t)
− αj

∂b2ij(hij, t)

∂hij(t)
+

∂C2ij(qij, hij, t)

∂hij(t)

)
×
(
hij(t) − h∗

ij(t)
)

+
J∑

j=1

K∑
k=1

(
∂C2jk(qjk, hjk, t)

∂hjk(t)
+

∂v2jk(hjk, t)

∂hjk(t)
− αj

∂b2jk(hjk, t)

∂hjk(t)

)
×
(
hjk(t) − h∗

jk(t)
)

+
J∑

j=1

(
I∑

i=1

qij(t) −
K∑

k=1

qjk(t)

)
×
(
λ2j(t) − λ∗

2j(t)
)}

dt ≥ 0 (3)

Our focus is on exploring the effect of seasonality in demand, and we consider a simple
functional form Dk to describe the demand, in which the cycle length is set to be a year.

Dk(ρk, w, t) =
(
D̃ − wρk(t)

)
· (1 − RAd · cos(2π(t + ϕd)))

ρf
3j +

∂C3jk(qjk, hjk, t)

∂qjk(t)

{
= ρk(t), qjk(t) > 0

≥ ρk(t), qjk(t) = 0

ak(Q
4, t)

{
= ρko(t), qb

ko(t) > 0

≥ ρko(t), qb
ko(t) = 0
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Dk(ρk(t))

{
≤ qjk(t), ρk = 0

= qjk(t), ρk > 0

The equilibrium conditions of the demand market can be formulated simultaneously us-

ing the following evolutionary variational inequality [5-7] with vector field K4 =

{
(Q3∗, Q4∗,

λ∗
3) ∈ L2

(
[0, T ], RJK+KO+K

+

) ∣∣qjk(t) ≥ 0,
p∑

o=1

qb
ko(t) ≤ rk

k∑
j=1

qjk(t) a.e. in[0, T ], ∀j, k, o

}
with the LaGrange multiplier λ3k(t) (λ3(t) = (λ3k(t))k=1,...,K)∫ T

0

{
J∑

j=1

K∑
k=1

(
ρf

3j(t) +
∂C3jk(qjk, hjk, t)

∂qjk(t)
− ρk(t) − rkλ3k(t)

)
× (qjk(t) − q∗jk(t))

+
K∑

k=1

O∑
o=1

(
ak(Q

4, t) − ρko(t) + λ3k(t)
)
×
(
qb
ko(t) − qb∗

ko(t)
)

+
K∑

k=1

O∑
o=1

(
ak(Q

4, t) − ρko(t) + λ3k(t)
)
× (ρk(t) − ρ∗

k(t))

+
K∑

k=1

(
rk

J∑
j=1

qjk(t) −
O∑

o=1

qb
ko(t)

)
× (λ3k(t) − λ∗

3k(t))

}
dt ≥ 0 (4)

Denote the recycling cost by Co(Q
4, t) for recovery center o. The unusable materials

must be sent to the landfill, and the disposal cost is described as ρχ̄o

N∑
n=1

qb
ko, where χo is

the transformation rate. C4io(Q5, t): the unit of transaction cost charged for product by
recovery center o to manufacturer i at time t; qb

ko(t): amount of product transacted from

recovery center o to demand market k at time t

(
Q4(t) = (qko)k=1,2,...,K

o=1,2,...,O

)
; ρko(t): price

charged for product by recovery center o to demand market k at time t; ρk(t): market
price of product at demand market k at time t; w: the sensitivity of demand to price
which implies the degree of relying on price advantage for retailers.

Hence, the optimality conditions for all recovery centers can be described simulta-
neously using the following evolutionary variational inequality [5-7] with vector field

K5 =

{
(Q4∗, Q5∗, λ∗

4) ∈ L2
(
[0, T ], RIO+KO+O

+

) ∣∣qb
io(t) ≥ 0,

m∑
i=1

qb
io(t) ≤ χo

o∑
k=1

qko(t) a.e.

in[0, T ], ∀i, k, o

}
with the LaGrange multiplier λ4(t) = (λ4o(t))o=1,...,O.

∫ T

0

{
K∑

k=1

O∑
o=1

(
∂Co(Q

4, t)

∂qb
ko(t)

+ ρko(t) + ρχ̄ − χo · λ4o(t)

)
× (qko(t) − q∗ko(t))

+
I∑

i=1

O∑
o=1

(
−ρb

4o(t) +
∂C4io(q

b
io, t)

∂qb
io(t)

+ λ4o(t)

)
×
(
qb
io(t) − qb∗

io (t)
)

+
O∑

o=1

(
χo

K∑
k=1

qb
ko(t) −

I∑
i=1

qb
io(t)

)
× (λ4o(t) − λ∗

4o(t))

}
dt ≥ 0 (5)

In equilibrium, the equilibrium material flows and price patterns must satisfy the sum
of the optimality conditions (1), (2), (3), (4) and the equilibrium condition (5).
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3. Numerical Example. Here we provide numerical examples to illustrate the effects
of parameters on the equilibrium solutions. These examples have been constructed using
two raw material suppliers, two manufacturers, three retailers, two demand markets and
two recovery centers. And functions are constructed as follows:

fs(Q
1, t) = 3

(
2∑

i=1

qsi(t)

)2

+

(
2∑

i=1

q1i(t)

)(
2∑

i=1

q2i(t)

)
+ 2

(
2∑

i=1

qsi(t)

)
, s = 1, 2;

f r
1 (Q1, t) =

(
βr

2∑
s=1

qs1

)2

+

(
βr

2∑
s=1

qs1

)(
βr

2∑
s=1

qs2

)
+ 4; C1io(Q

5, t) = 2q2
io(t);

f r
2 (Q1, t) = 2

(
βr

2∑
s=1

qs2

)2

+

(
βr

2∑
s=1

qs1

)(
βr

2∑
s=1

qs2

)
+ 1; C4io(Q

5, t) = q2
io(t) + 3;

C1si(Q
1, t) = (qsi(t))

2 + 2qsi(t); C2si(qsi, t) = 2.5q2
si(t) + 1; b1ij(hij, t) = hw

ij(t);

C1ij(Q
2, hij, t) = 2q2

ij(t) − 1.5hij(t) + 4; C2ij(qij, hij, t) = 0.5q2
ij(t) − hij(t) + 1;

C2jk(Q
3, hjk, t) = q2

jk(t) − hjk(t) + 2; C3jk(qjk, hjk, t) = 0; b2ij(hij, t) = hw
ij(t);

a1(Q
4, t) = 0.5

2∑
o=1

2∑
k=1

qko(t) + 4; a2(Q
4, t) = 0.4

2∑
o=1

2∑
k=1

qko(t) + 8;

C1(Q
4, t) =

(
2∑

k=1

qk1(t)

)2

+ 2
2∑

k=1

qk1(t)
2∑

k=1

qk2(t) + 3; v1ij(hij, t) = hij(t) + 2;

C2(Q
4, t) = 2

(
2∑

k=1

qk2(t)

)2

+
2∑

k=1

qk1(t)
2∑

k=1

qk2(t) + 1; v2ij(hij, t) = hij(t) + 2;

Cj(Q
2, t) =

(
2∑

i=1

3∑
j=1

qij(t)

)2

; fu
i (Q5, t) =

(
βu

2∑
o=1

q2o(t)

)2

+ 2βu

2∑
o=1

q2o(t);

rij(Q
2, t) = 6q2

ij(t) + 13qij(t); b2jk(hjk, t) = hw
jk(t); v2jk(hjk, t) = hjk(t) + 1;

fu
i (Q5, t) =

(
βu

2∑
o=1

q1o(t)

)2

+ βu

2∑
o=1

q1o(t) + 3

Table 1 shows the changes of shipments transacted between manufacturer 1/manufac-
turer 2 and retailers 1, 2, 3. The proportion of shipment transacted between manufacturer
1/manufacturer 2 and retailer 1 is the biggest. We can see that, the shipments transacted
between manufacturer 1/manufacturer 2 and retailer 1 reduce with the increasing of the
probability of risk occurrence. On the opposite side, the bigger the probability of risk
occurrence is, the larger the shipments transacted between manufacturer 1/manufacturer
2 and retailers 2, 3 are. That is because the transaction costs between manufacturer
1/manufacturer 2 and retailer 1 are lower and the shipment is bigger. In a word, the
bigger the shipment is, the larger the loss caused by the probability of risk occurrence is.

We can easily see from Figure 1, when the price sensitivity w is equal to 1.5, the total
amounts of shipments vary over time t. The figure is in line with the trend of sine curve
with the minimum value when t = 0 or t = 1, and with the maximum value when t = 0.5.
It clearly conforms to the actual situation. And from Figure 1, we can also find that
the shipment from manufacturers Q2 is greater than the total volume of raw material
Q1. It is because that the recovery centers recycle products which will be reused by the
manufacturers.
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Table 1. The shipment and proportion between manufacturer and retailer
varying with the probability of risk occurrence

Manufacturer 1
Retailer ε = 0.1 ε = 0.15 ε = 0.2 ε = 0.25 ε = 0.3 ε = 0.35 ε = 0.4 ε = 0.45

1 600 600 599 597 595 593 590 597
% 48.27 48.08 47.88 47.61 47.33 47.06 46.71 46.44
2 389 390 391 392 393 395 397 398
% 31.24 31.25 31.255 31.26 31.265 31.43 31.49 31.57
3 254 258 261 265 269 272 276 279
% 20.43 20.67 20.86 21.13 21.40 21.59 21.85 22.07

Manufacturer 2
Retailer ε = 0.1 ε = 0.15 ε = 0.2 ε = 0.25 ε = 0.3 ε = 0.35 ε = 0.4 ε = 0.45

1 1149 1121 1097 1075 1055 1036 1020 1005
% 56.55 55.28 54.22 53.21 52.33 51.52 50.82 50.12
2 546 558 567 576 583 589 594 599
% 26.87 27.51 28.03 28.51 28.92 29.29 29.60 29.88
3 337 349 359 369 378 386 393 401
% 16.58 17.21 17.75 18.27 18.75 19.19 19.58 20

Figure 1. The shipment varying over time

4. Conclusions. In this paper, we present a 5-tiered closed-loop supply chain supernet-
work based on disruption risks, in which the demand markets’ demand is seasonal. In
order to describe the seasonal demand, we use a simple cyclic function. In a word, the
research on supply chain supernetwork equilibrium based on disruption risks helps the
firms optimize their risk management, and reduce risk loss. The bigger the shipment is,
the larger the loss caused by the probability of risk occurrence is. We should pay more
attention to this supply chain risk. We also easily find that the demand of the products
is seasonal. In other words, the demand is bigger in the middle of a year. For further
research, the model should be used to the service supply chain network for more details.
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