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Abstract. In this paper, an improved binary particle swarm optimization (IBPSO) is
proposed based on the hamming distance. According to the characteristic of transform
function, particle with bigger absolute value of velocity is more likely to move (change
its position). In other words, the absolute value of velocity should increase if a particle
tends to learn from its personal or the global experience. Therefore, the velocity update
equation is reformulated. 30 benchmark instances of 0-1 knapsack problem are used to
test the proposed algorithm and the comparison with three latest binary algorithms is also
presented. The numerical experimental results indicate the effectiveness and efficiency
of IBPSO.
Keywords: Binary particle swarm optimization, Hamming distance, 0-1 knapsack

1. Introduction. Many solutions of real life optimization problems can be expressed as
binary strings, such as data compression [1,2], image compression [3,4], feature selection
[5], and 0-1 knapsack problems [6]. Many meta-heuristic algorithms have been applied to
solving the binary optimization problems, such as genetic algorithm (GA) [7,8], particle
swarm optimization (PSO) [9-11], evolutionary algorithm (EA) [12], ant colony optimiza-
tion (ACO) [13], and gravitational search algorithm (GSA) [14,15]. Binary PSO (BPSO),
which has simple structure and is easy to implement, is widely used to address various
binary optimization problems. Several improved variants of BPSO have been proposed
in the literature [5,6,9-11] in terms of topology, parameter selection, transform function,
and hybridization with other algorithms. In [9], a binary hybrid topology particle swarm
optimization quadratic interpolation (BHTPSO-QI) was proposed to enhance the global
searching capability. In [11], a modified binary PSO about steepness was investigated to
generate a better transform function. Beheshti et al. introduce acceleration into binary
PSO [6]. An improved binary PSO with local search was proposed and applied to feature
selection problems in [5].

However, none of the above works has considered the essence of velocity update equation
that particles will have more chance to change their position if they tend to learn from
their own experience or the global experience. Different from continuous PSO, the sign
of velocity does not mean direction. Positive and negative values of velocity have the
same impact on the evolvement of positions. In other words, only the absolute value of
velocity should be concerned, which should increase if the position of a particle is different
from the search experience. Therefore, in this paper, a new velocity update equation is
proposed based on the above motivation.

The remainder of this paper is arranged as follows. Section 2 describes the details of
the proposed variant of BPSO. In Section 3, the numerical experiments and analysis are
conducted. Finally, Section 4 gives the conclusions.
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2. Improved Binary Particle Swarm Optimization.

2.1. Particle swarm optimization. PSO is a population-based optimization technique
originally introduced by Kennedy and Eberhart in 1995 [16]. A PSO system simulates
the knowledge evolvement of a social organism, in which each particle represents one
candidate solution of a problem.

In the classical PSO system with M particles, each individual is treated as a volume-less
particle in the D-dimensional space, with position and velocity vectors of particle i at the
kth iteration represented as xi(k) = (xi,1(k), . . . , xi,D(k)) and vi(k) = (vi,1(k), . . . , vi,D(k)),
in order to optimize the objective function:

minimize f(x), x ∈ Ω (1)

The particle moves according to the following equations:

vi,d(k + 1) = ωvi,d(k) + c1r1(Pi,d(k) − xi,d(k)) + c2r2(Pg,d(k) − xi,d(k)) (2)

xi,d(k + 1) = xi,d(k) + vi,d(k + 1) (3)

where i = 1, 2, . . . , M , d = 1, 2, . . . , D, ω is the inertia weight, and c1 and c2 are acceler-
ation coefficients. r1 and r2 are random numbers distributed uniformly in (0, 1). Vector
Pi = (Pi,1, Pi,2, . . . , Pi,D) is the best previous position of particle i, called personal best
position, and vector Pg = (Pg,1, Pg,2, . . . , Pg,D) (g = arg min

i=1:M
f(Pi)) is the position of the

best particle in the swarm, called global best position.
The second term of Equation (2) is called cognition term and the third term is called

social term. The value of ω controls the balance between exploration and exploitation.
|vi,d(k)| ≤ vmax and vmax is set as regarding the search space bound.

2.2. Binary particle swarm optimization. A binary version of PSO (BPSO) was
first proposed by Kennedy and Eberhart [17], in which the position of a particle has two
possible values: ‘0’ or ‘1’. The velocity is also computed as Equation (2), and then it is
transformed into the interval [0, 1] by sigmoid function (Equation (4)) as shown in Figure
1.

S (vi,d (k)) = sigmoid (vi,d (k)) =
1

1 + e−vi,d(k)
(4)

The position of a particle is updated as follows:

if rand() < S (vi,d(k + 1))
then xi,d(k + 1) = 1
else xi,d(k + 1) = 0

(5)

|vi,d(k)| ≤ vmax and vmax can be set as 6 according to Figure 1.
Although the above method has simple structure and is easy to use, it has fatal draw-

back. There should be no difference between positive and negative values in velocity,
because the sign only means direction. However, in sigmoid function (Figure 1), a neg-
ative velocity value means smaller probability to change, while a positive velocity value
means bigger probability to change. Furthermore, in classical PSO, when the velocity
tends to zero, it means the particle is already in a good position and does not need to
move. However, as in sigmoid function, the particle still tends to change with a probability
of 0.5, which is unreasonable.

To address the above disadvantage of BPSO, an improved version is proposed in [10],
in which the transform function is changed as follows (shown in Figure 2):

S (vi,d(k)) = 2 ×
∣∣∣∣ 1

1 + e−vi,d(k)
− 0.5

∣∣∣∣ (6)
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Figure 1. Sigmoid transform function

Figure 2. Two improved transform functions

A binary gravity search algorithm (BGSA) was proposed [14], in which, a new transform
function is defined as follows:

S (vi,d (k)) = |tanh (vi,d (k))| (7)

Note from Figure 2 that, particles with bigger absolute value of velocity are more likely
to move. In addition, Equation (7) makes the particles more easily to change.

However, most researchers have been paying attention to the improvement of the trans-
form function, but the performance of the algorithm is also affected by the velocity update
equation. Different from the Euclidean distance used in the continuous PSO, the distance
between two particles in BPSO is defined as the number of positions at which the corre-
sponding bits are different (known as Hamming distance). Therefore, the operator ‘−’ in
the second and third term of Equation (2) means whether Pi,d and xi,d, Pg,d and xi,d are
the same or different. It will be ‘1’ if they are the same, ‘0’ if they are different, and ‘−1’
is meaningless.

Therefore, only the absolute values of Pi,d(k)−xi,d(k) and Pg,d(k)−xi,d(k) are considered
here. If they are equal to ‘1’ (xi,d is different from Pi,d or Pg,d), xi,d requires more chance
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(larger probability) to change. So, a new velocity update equation is proposed as follows:

vi,d(k + 1) = ± (ω |vi,d(k)| + c1r1 |Pi,d(k) − xi,d(k)| + c2r2 |Pg,d(k) − xi,d(k)|) (8)

which ensures the absolute value of vi,d(k + 1) to increase when particle i tends to learn
from its own experience or the best particle, and the sign of vi,d(k + 1) can be ‘+’ or ‘−’
because positive and negative values have the same probability according to Figure 2.

At the early search stage (exploration), large ω and frequently learning from previous
experience make particles have more opportunity to evolve. While at the later search
stage, particles may have stopped evolving and get trapped into a local optimum. At
that time, the second term and the third term of Equation (8) are usually equal to 0,
and then we get vi,d(k + 1) = ± (ω |vi,d(k)|) with a relatively small ω. Note from Figure 2
that the particle still has nearly 50% chance to change even with a small value of velocity
(e.g., vi,d(k+1) = 1). Therefore, the swarm has a chance to jump from the local optimum
and continue to exploit a new area. When particles stagnate, Equation (7) may generate
more “energy” than Equation (6) for particles to move. Therefore, these two transform
functions are both used in the proposed binary PSO.

3. IBPSO for 0-1 Multi-Dimensional Knapsack Problems (0-1 MKP).

3.1. Mathematical model of 0-1 MKP. In order to evaluate the performance of
IBPSO, the 0-1 MKP, which is NP-complete, is adopted in this section. Many real
problems are formulated as the 0-1 MKP, such as cargo loading [18], resource allocating
[19], capital budgeting [8], and pollution prevention and control [11].

The 0-1 MKP consists of D items and n knapsacks with limited capacities. Each item
has a profit and weight. The objective is to select a subset of items having maximum
total profit without exceeding the capacity constraints. Therefore, the 0-1 MKP can be
formulated as follows:

maximize
∑D

j=1 pjxj

subject to
∑D

j=1 wijxj ≤ ci, i = 1, 2, . . . , n, xj ∈ {0, 1}
(9)

where pj ≥ 0 is the profit of item j, wij ≥ 0 is the weight of item j in knapsack i, and ci

is the capacity of knapsack i. xj = 1 means that item i is selected.
When IBPSO is applied to solving 0-1 MKP, the position of a particle represents a

candidate solution, in which the dimension equals the number of items. However, in
the swarm, some solutions are infeasible because the constraints in Equation (9) are not
satisfied (the total weights exceed the capacities of some knapsacks). Many methods have
been used to deal with these infeasible solutions [6,20]. One type of method is to repair
the solution to a feasible solution, and another type is to decrease the probability to select
infeasible solutions by using penalty function. In this paper, a repair method using greedy
algorithm is adopted, in which the item with smallest profit weight ratio will be removed.

The test instances are selected from OR-Library [21].

3.2. Results and analysis. The latest research about 0-1 MKP is given in [9], where
BHTPSO and BHTPSO-QI have been empirically proved to outperform other algorithms.
Therefore, in this paper, BHTPSO, BHTPSO-QI and BGSA [14] are taken to do compar-
ison with the proposed IBPSO. All the algorithms are independently run 30 times under
the same circumstances. The population size is set to 100 (M = 100). The maximum
number of iterations is set to 3000. The inertia weight ω in IBPSO is set to linearly
decrease from 0.9 to 0.4. The acceleration coefficients c1 = c2 = 2.0.

The best, mean and worst maximum profits obtained by the algorithms are listed in
Table 1 (instances 1-15) and Table 2 (instances 16-30), in which, IBPSO-E and IBPSO-T
represent improved binary particle swarm optimization with Equations (6) and (7) as
their transform functions, respectively.
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Table 1. Experimental results on the benchmarks 1-15 from OR-Library

MKP benchmark Profit BHTPSO BHTPSO-QI BGSA IBPSO-T IBPSO-E

mknapcb1-5.100-00
Best 24,169 24,301 24,152 24,326 24,302
Mean 23822.8 23821.7 23835.7 24,161 24,167
Worst 23,415 23,287 23,175 23,998 24,017

mknapcb1-5.100-01
Best 24,109 23,944 23,986 24,274 24,274
Mean 23657.2 23688.7 23563.3 24,124 24,160
Worst 22,953 23,375 23,177 23,864 23,982

mknapcb1-5.100-02
Best 23,435 23,418 23,386 23,494 23,523
Mean 23072.7 23073.1 23041.5 23,438 23,469
Worst 22,678 22,621 22,543 23,308 23,308

mknapcb1-5.100-03
Best 23,253 23,192 23,172 23,468 23,486
Mean 22,928 22923.1 22,863 23,303 23,322
Worst 22,507 22,234 22,468 23,142 23,235

mknapcb1-5.100-04
Best 23,815 23,774 23,755 23,959 23,959
Mean 23473.6 23527.9 23459.2 23,905 23,932
Worst 23,155 23,053 23,106 23,742 23,821

mknapcb2-5.250-00
Best 57,814 57,800 57,565 58,900 58,957
Mean 56874.3 56685.2 56554.7 58,685 58,777
Worst 54,935 55,255 55,191 58,327 58,477

mknapcb2-5.250-01
Best 59,982 59,767 60,057 61,206 61,360
Mean 58588.8 58680.6 58613.9 61,036 61,115
Worst 56,807 56,821 57,707 60,816 60,848

mknapcb2-5.250-02
Best 60,630 60,524 59,936 61,786 61,734
Mean 59234.1 59186.3 58975.3 61,468 61,523
Worst 57,435 57,278 57,723 61,070 61,297

mknapcb2-5.250-03
Best 57,736 57,884 57,970 59,055 59,139
Mean 56,773 56,584 56744.4 58,859 58,962
Worst 55,589 55,164 55,371 58,507 58,613

mknapcb2-5.250-04
Best 57,378 57,550 56,959 58,680 58,688
Mean 56129.2 56361.1 55961.3 58,485 58,550
Worst 54,364 53,929 54,637 58,297 58,298

mknapcb3-5.500-00
Best 114,493 114,438 111,206 119,528 119,729
Mean 111,017 111,469 108,930 119,240 119,340
Worst 106,454 107,005 106,951 118,862 118,966

mknapcb3-5.500-01
Best 112,821 112,147 108,522 117,128 117,322
Mean 109,276 109,247 106,631 116,780 117,000
Worst 100,118 104,696 104,519 116,368 116,544

mknapcb3-5.500-02
Best 114,774 116,099 111,271 120,557 120,807
Mean 112,035 112,001 109,430 120,180 120,390
Worst 106,406 104,627 107,683 119,716 119,975

mknapcb3-5.500-03
Best 115,828 114,327 111,283 119,719 120,102
Mean 112,200 111,671 109,062 119,390 119,700
Worst 106,222 107,578 107,061 118,778 119,386

mknapcb3-5.500-04
Best 115,889 117,242 112,391 121,691 121,785
Mean 112,253 113,364 110,564 121,270 121,470
Worst 102,820 103,910 108,670 120,987 121,125

All the 15 instances in Table 1 have 5 knapsacks (constraints). It is obvious to see
that the results obtained by IBPSO (both IBPSO-T and IBPSO-E) are much better
than those obtained by other algorithms (the best values of each instance are marked in
bold). In addition, IBPSO with simple update equation is easy to implement and runs
faster than BHTPSO and BGSA under the same circumstances. BGSA requires complex
computation of masses, forces, distances and accelerations of the agent, and BHTPSO has
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Table 2. Experimental results on the benchmarks 16-30 from OR-Library

MKP benchmark Profit BHTPSO BHTPSO-QI BGSA IBPSO-T IBPSO-E

mknapcb4-10.100-00
Best 22,905 22,876 22,836 23,055 23,055
Mean 22425.8 22449.6 22334.3 22,924 22,946
Worst 21,980 21,999 21,975 22,670 22,700

mknapcb4-10.100-01
Best 22,573 22,408 22,441 22,694 22,763
Mean 22047.8 22017.3 21991.8 22,523 22,330
Worst 21,322 21,454 21,435 22,440 22,413

mknapcb4-10.100-02
Best 21,797 21,949 21,849 22,751 22,751
Mean 21342.3 21461.3 21313.5 22,455 22,545
Worst 20,958 20,886 20,957 22,207 22,383

mknapcb4-10.100-03
Best 22,418 22,376 22,325 22,594 22,548
Mean 22037.8 22029.1 21961.9 22,483 22,479
Worst 21,228 21,533 21,488 22,371 22,367

mknapcb4-10.100-04
Best 22,215 22,254 22,168 21,725 21,755
Mean 21822.8 21903.3 21840.8 21,645 21,653
Worst 21,362 21,339 21,271 21,559 21,435

mknapcb5-10.250-00
Best 57,530 57,036 56,928 58,779 58,840
Mean 55854.1 55960.7 55759.4 58,550 58,650
Worst 53,570 53,381 54,217 58,086 58,359

mknapcb5-10.250-01
Best 56,568 56,490 56,337 58,548 58,368
Mean 55443.9 55708.1 55455.9 58,076 58,156
Worst 53,274 52,907 53,739 57,730 57,865

mknapcb5-10.250-02
Best 56,426 55,982 55,573 57,670 57,778
Mean 54793.2 54727.8 54638.3 57,393 57,517
Worst 52,871 52,714 53,516 57,113 57,227

mknapcb5-10.250-03
Best 59,030 59,077 58,595 60,604 60,583
Mean 58057.8 57721.9 57766.2 60,336 60,384
Worst 56,254 53,774 56,701 59,978 60,117

mknapcb5-10.250-04
Best 56,217 56,204 56,186 57,743 57,715
Mean 54941.1 54872.6 54,850 57,444 57,485
Worst 51,850 50,832 53,612 57,077 57,232

mknapcb6-10.500-00
Best 110,996 111,669 108,487 116,745 117,112
Mean 107,698 108,367 105,760 116,340 116,680
Worst 104,239 103,802 102,725 115,909 116,324

mknapcb6-10.500-01
Best 114,262 113,001 109,569 118,212 118,464
Mean 108,648 109,197 106,775 117,820 118,150
Worst 100,740 100,764 103,478 117,406 117,814

mknapcb6-10.500-02
Best 113,987 112,419 109,705 117,854 118,018
Mean 108,576 109,004 106,853 117,380 117,690
Worst 102,439 103,703 104,565 116,599 116,945

mknapcb6-10.500-03
Best 112,476 112,198 108,628 115,386 115,740
Mean 107,692 107,796 105,679 115,060 115,440
Worst 101,860 99,470 102,679 114,497 115,151

mknapcb6-10.500-04
Best 109,567 109,287 106,972 118,501 118,664
Mean 106,217 106,212 104,509 118,120 118,350
Worst 100,836 100,509 102,665 117,504 117,924

several more parameters to control (NF , T ′ and three iteration-dependent acceleration
coefficients).

In comparison with the two transform functions (Equations (6) and (7)), the mean
and worst values of maximum profits obtained by IBPSO-E are better than those got
by IBPSO-T. This phenomenon indicates that IBPSO-E has stable performance, while
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IBPSO-T has potential to obtain excellent solution. However, for high dimensional in-
stances (e.g., D = 500), IBPSO-E outperforms its counterpart.

When the number of knapsacks increases to 10 (more constraints), IBPSO still has
amazing performance over the other three algorithms. IBPSO-T and IBPSO-E have
comparative performance. In some instances, IBPSO-T is able to obtain excellent best
solutions, but the average performance is not so good as IBPSO-E. Similar to Table 1,
IBPSO-E shows absolutely best performance over other algorithms including IBPSO-T,
which indicates the scalability of IBPSO-E to large scale binary optimization problems.

4. Conclusions. In the binary space, distance between two particles is defined as the
number of positions in which the value is different. This is known as hamming distance,
based on which, an improved binary particle swarm optimization was proposed. The
absolute value of velocity will increase if the particle wants to learn from other particles.
30 benchmark instances of 0-1 knapsack problem were used to test the proposed algorithm
and the comparison with other three latest binary algorithms was also presented. The
numerical experimental results indicate the effectiveness and efficiency of the improved
algorithm.

The future work will try to apply the proposed algorithm to the multi-objective 0-1
knapsack problems.
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