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Abstract. Variable order calculus is a natural candidate to provide an effective math-
ematical framework for the description of complex dynamical problems. Therefore, we
propose a numerical method to solve a kind of variable order nonlinear fractional differ-
ential equations with the second kind of Chebyshev polynomials. The main idea of this
approach is that we derive two kinds of differential operational matrixes with Chebyshev
polynomials. With the operational matrixes, the original equation is transformed into the
products of several dependent matrixes, which can be viewed as an algebraic system after
taking the collocation points. The numerical solution of the original equation is obtained
by solving the algebraic system. Finally, the example shows that the numerical method
is computationally efficient.
Keywords: The second kind of Chebyshev polynomials, Variable order fractional dif-
ferential equation, Differential operational matrixes

1. Introduction. Fractional differential equations (FDEs) generalized from classical in-
teger order ones, which are obtained by replacing integer order derivatives by fractional
ones. With further development of science research, more and more researchers have
found that a variety of important dynamical problems exhibit fractional order behavior
that may vary with time or space. This fact indicates that variable order calculus is a
natural candidate to provide an effective mathematical framework for the description of
complex dynamical problems. The modeling and application of variable order differen-
tial equations have been a front subject. However, since the kernel of the variable order
operator has a variable exponent, analytical solutions of variable order FDEs are usually
difficult to obtain. Therefore, the development of numerical methods in solving variable
order FDEs is necessary.

Only a few authors studied numerical methods of variable order FDE. Coimbra [1]
employed a consistent approximation for the solution of variable order FDE. Soon [2]
proposed a second order Runge-Kutta method to numerically integrate the variable order
FDE. Shen et al. [3] gave an approximate scheme for the variable order time fractional
diffusion equation. Chen et al. [4, 5] paid their attention to Bernstein polynomials to solve
variable order linear cable equation and variable order time fractional diffusion equation.
An alternating direct method for the two dimensional variable order fractional percolation
equation was proposed in [6]. Explicit and implicit Euler approximations for FDE were
introduced in [7]. A numerical method with the Legendre polynomials is presented for a
class of variable order FDEs in [8]. Chen et al. [9] introduced the numerical solution for
a class of nonlinear variable order FDEs with Legendre wavelets. It is noteworthy that
the Chebyshev polynomials family have beneficial properties so that they are widely used
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in approximation theory. For example, Sweilam et al. [10] used the second kind shifted
Chebyshev polynomials for solving space fractional order diffusion equation. However,
the second kind of Chebyshev polynomials have been paid less attention to solve variable
order FDE. Accordingly, we will solve a kind of variable order nonlinear FDEs defined on
the interval [0, R], R > 0 with the second kind of Chebyshev polynomials. The FDE is
shown as follows:{

Dα(t)y2(t) + a(t)Dβ(t)y(t) + b(t)y′(t) = g(t), (0 < α(t), β(t) ≤ 1)

y(0) = y0, t ∈ [0, R],
(1)

where Dα(t)y2(t) and Dβ(t)y(t) are the fractional derivatives in Caputo sense. a(t) and
b(t) are assumed to be casual functions on [0, R]. g(t) is known and y(t) is unknown.

The basic idea of this approach is that we derive the kinds of differential operational
matrixes with Chebyshev polynomials. With the operational matrixes, Equation (1) is
transformed into the products of several dependent matrixes, which can be viewed as an
algebraic system after taking the collocation points. By solving the algebraic system,
the numerical solution of Equation (1) is acquired. Since the second kind of Chebyshev
polynomials are orthogonal to each other, the operational matrixes with Chebyshev poly-
nomials greatly reduce the size of computational work while accurately providing the
series solution. From the example, we can see that the numerical solution gotten by our
method is in good agreement with the exact solution, which demonstrates the correction
and high efficiency of our method.

The paper is organized as follows. In Section 2, some necessary preliminaries are intro-
duced. In Section 3, the basic definition and property of the second kind of Chebyshev
polynomials are given. In Section 4, function approximation is given. In Section 5, two
kinds of operational matrixes are derived and we applied the operational matrixes to solv-
ing the equation as given at beginning. In Section 6, we present the numerical example to
demonstrate the efficiency of the algorithm. We presents conclusions resulting from the
study in Section 7.

2. Preliminaries. There are several definitions for variable order fractional derivatives,
such as the one in Riemann-Liouville’s sense and the one in Caputo’s sense [11]. In this
paper, the definition in Caputo’s sense is considered.

Definition 2.1. Captuo fractional derivate with order α(t) is defined by

Dα(t)y(t) =
1

Γ(1 − α(t))

∫ t

0+

(t − τ)y′(τ)dτ +
y(0+) − y(0−)

Γ(1 − α(t))
t−α(t). (2)

If we assume the starting time in a perfect situation, we can get Definition 2.2 as follows.

Definition 2.2.

Dα(t)y(t) =
1

Γ(1 − α(t))

∫ t

0

(t − τ)y′(τ)dτ. (3)

By Definition 2.2, we can get the following formula [4]

Dα(t)tn =

{
Γ(n+1)

Γ(n+1−α(t))
tn−α(t), n = 1, 2, · · ·

0, n = 0
(4)

3. The Second Kind of Chebyshev Polynomials. The second kind of Chebyshev
polynomials are defined on the interval I = [−1, 1]. They are orthogonal to each other
with respect to the weight function ω(x) =

√
1 − x2. They satisfy the following formulas

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x) − Un−1(x), n = 1, 2, · · · ,
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and ∫ 1

−1

√
1 − x2Un(x)Um(x)dx =

{
π
2
, m = n,

0, m ̸= n.

For t ∈ [0, R], let x = 2t
R
− 1. We can get shifted second kind of Chebyshev polynomials

Ũn(t) = Un(2t
R
− 1), which are also orthogonal with respect to the weight function ω(t) =√

tR − t2 for t ∈ [0, R]. They satisfy the following formulas

Ũ0(t) = 1, Ũ1(t) =
4t

R
− 2, Ũn+1(t) = 2

(
2t

R
− 1

)
Ũn(t) − Ũn−1(t), n = 1, 2, · · · ,

and ∫ R

0

√
tR − t2Ũn(t)Ũm(t)dt =

{
π
8
R2, m = n,

0, m ̸= n.

The shifted second kind of Chebyshev polynomials can also be expressed as

Ũn(t) =


1, n = 0,
[n
2
]∑

k=0

(−1)k (n−k)!
k!(n−2k)!

(4t
R
− 2)n−2k, n ≥ 1,

(5)

where [n
2
] denotes the maximum integer which is no more than n

2
.

Let Ψn(t) =
[
Ũ0(t), Ũ1(t), · · · , Ũn(t)

]T

and Tn(t) = [1, t, · · · , tn]T. Then

Ψn(t) = ATn(t), (6)

where

A = BC. (7)

C =


1 0 0 · · · 0

C0
1

(
−R

2

)1−0
C1

1

(
−R

2

)1−1
0 · · · 0

C0
2

(
−R

2

)2−0
C1

2

(
−R

2

)2−1
C2

2

(
−R

2

)2−2 · · · 0
...

...
...

...
...

C0
n

(
−R

2

)n−0
C1

n

(
−R

2

)n−1
C2

n

(
−R

2

)n−2 · · · Cn
n

(
−R

2

)n−n

 .

If n is an even number, then

B=



1 0 0 ··· 0

0 (−1)0
(1−0)!

0!(1−0)! (
4
R )1−0

0 ··· 0

(−1)1
(2−1)!

1!(2−2)! (
4
R

)2−2 0 (−1)0
(2−0)!

0!(2−0)! (
4
R

)2−0 ... 0

..

.
..
.

..

.
..
.

..

.

(−1)
n
2

(n− n
2 )!

( n
2 )!(n−2· n

2 )! (
4
R

)
n−2· n

2 ··· (−1)
n
2 −1 (n− n

2 +1)!

( n
2 −1)![n−2·( n

2 −1)]! (
4
R

)
n−2·( n

2 −1) ··· (−1)0
(n−0)!

0!(n−0)! (
4
R

)n−0


.

If n is an odd number, then

B =



1 0 0 ··· 0

0 (−1)0
(1−0)!

0!(1−0)! (
4
R

)1−0 0 ··· 0

(−1)1
(2−1)!

1!(2−2)! (
4
R

)2−2 0 (−1)0
(2−0)!

0!(2−0)! (
4
R

)2−0 ... 0

..

.
..
.

..

.
..
.

..

.

0 (−1)
n−1

2

(
n− n−1

2

)
!(

n−1
2

)
!
(

n−2· n−1
2

)
!
( 4

R )n−2· n−1
2 0 ··· (−1)0

(n−0)!
0!(n−0)! (

4
R )n−0


.

Therefore, we can easily gain Equation (8).

Tn(t) = A−1Ψn(t). (8)
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4. Function Approximation.

Theorem 4.1. Suppose that the function y(t) is n + 1 times continuously differentiable

on the interval [0, R]. Let un(t) =
n∑

i=0

λiŨi(t) = ΛTΨn(t) be the best square approximation

function of y(t), where Λ = [λ0, λ1, · · · , λn]T. Then

∥y(t) − un(t)∥2 ≤
MSn+1R

(n + 1)!

√
π

8
,

where M = max
t∈[0,R]

yn+1(t) and S = max {R − t0, t0}.

Proof: We consider the Taylor polynomials

y(t) = y(t0) + y′(t − t0) + · · · + y(n)(t0)
(t − t0)

n

n!
+ y(n+1)(η)

(t − t0)
n+1

(n + 1)!
, t0 ∈ [0, R]

where η is between t and t0.
Let

pn(t) = y(t0) + y′(t − t0) + · · · + y(n)(t0)
(t − t0)

n

n!
.

Then

|y(t) − pn(t)| =

∣∣∣∣y(n+1)(η)
(t − t0)

n+1

(n + 1)!

∣∣∣∣ .

Since un(t) =
n∑

i=0

λiŨi(t) = ΛTΨn(t) is the best square approximation function of y(t),

we can gain

∥y(t) − un(t)∥2
2 ≤ ∥y(t) − pn(t)∥2

2

=

∫ R

0

ω(t) [y(t) − pn(t)]2 dt =

∫ R

0

ω(t)

[
y(n+1)(η)

(t − t0)
n+1

(n + 1)!

]2

dt

≤ M2

[(n + 1)!]2

∫ R

0

ω(t)(t − t0)
2n+2dt

=
M2

[(n + 1)!]2

∫ R

0

√
tR − t2(t − t0)

2n+2dt.

Let S = max {R − t0, t0}. Therefore,

∥y(t) − un(t)∥2
2 ≤

M2S2n+2

[(n + 1)!]2

∫ R

0

√
tR − t2dt =

M2S2n+2R2

(n + 1)!2
π

8
.

Finally, by taking the square root, Theorem 4.1 can be proved.

5. A Numerical Method for Solving Variable Order Nonlinear FDE.

5.1. Differential operational matrix of Dα(t)(u2
n(t)). According to Equation (6) and

Equation (4), we can get

Dα(t)(u2
n(t)) = Dα(t)(ΛTΨnΨT

nΛ)

= Dα(t)[ΛTATn(t)Tn(t)TATΛ]

= ΛTADα(t)[Tn(t)Tn(t)T]ATΛ
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= ΛTADα(t)


1 t · · · tn

t t2 · · · tn+1

...
...

...
...

tn tn+1 · · · t2n

ATΛ

= ΛTADα(t)


0 Γ(2)

Γ(2−α(t))
t1−α(t) · · · Γ(n+1)

Γ(n+1−α(t))
tn−α(t)

Γ(2)
Γ(2−α(t))

t1−α(t) Γ(3)
Γ(3−α(t))

t2−α(t) · · · Γ(n+2)
Γ(n+2−α(t))

tn+1−α(t)

...
...

...
...

Γ(n+1)
Γ(n+1−α(t))

tn−α(t) Γ(n+2)
Γ(n+2−α(t))

tn+1−α(t) · · · Γ(2n+1)
Γ(2n+1−α(t))

t2n−α(t)

ATΛ

= ΛTAMα(t)A
TΛ,

(9)

where

Mα(t) =


0 Γ(2)

Γ(2−α(t))
t1−α(t) · · · Γ(n+1)

Γ(n+1−α(t))
tn−α(t)

Γ(2)
Γ(2−α(t))

t1−α(t) Γ(3)
Γ(3−α(t))

t2−α(t) · · · Γ(n+2)
Γ(n+2−α(t))

tn+1−α(t)

...
...

...
...

Γ(n+1)
Γ(n+1−α(t))

tn−α(t) Γ(n+2)
Γ(n+2−α(t))

tn+1−α(t) · · · Γ(2n+1)
Γ(2n+1−α(t))

t2n−α(t)

 .

AMα(t)A
T is called the differential operational matrix of Dα(t)(u2

n(t)). Therefore,

Dα(t)(y2
n(t)) ≈ Dα(t)(u2

n(t)) = AMα(t)A
T. (10)

5.2. Differential operational matrix of Dα(t)Ψn(t). Let Dα(t)Ψn(t) = Pα(t)Ψn(t).
Pα(t) is called the differential operational matrix. The objective of this section is to
generate this matrix.

According to Equation (6) and Equation (4), we have

Dα(t)Ψn(t) = Dα(t) (ATn(t)) = ADα(t)
(
[1, t, · · · , tn]T

)
= A

[
0,

Γ(2)

Γ (2 − α(t))
t1−α(t), · · · ,

Γ(n + 1)

Γ(n + 1 − α(t))
tn−α(t)

]T

= A


0 0 · · · 0

0 Γ(2)
Γ(2−α(t))

t−α(t) · · · 0
...

...
...

...

0 0 · · · Γ(n+1)
Γ(n+1−α(t))

t−α(t)




1
t
...
tn


= ANα(t)A

−1Ψn(t),

(11)

where

Nα(t) =


0 0 · · · 0

0 Γ(2)
Γ(2−α(t))

t−α(t) · · · 0
...

...
...

...

0 0 · · · Γ(n+1)
Γ(n+1−α(t))

t−α(t)

 .

Therefore,
Dα(t)Ψn(t) = ANα(t)A

−1Ψn(t).

Pα(t) = ANα(t)A
−1. (12)

Dα(t)un(t) = ΛTPα(t)Ψn(t). (13)

In particular, for α(t) = 1, we can get

Ψ
′

n(t) = AN1A
−1 = P1Ψn(t). (14)

u′
n(t) = ΛTP1Ψn(t). (15)
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5.3. The method in solving the variable order nonlinear FDE. Let y(t) ≈ un(t) =
n∑

i=0

λiŨi(t) = ΛTΨn(t). According to Equations (10), (13) and (15), the original Equation

(1) is transformed into Equation (16) as follows:

ΛTAMα(t)A
TΨn(t) + a(t)ΛTPα(t)Ψn(t) + b(t)ΛTP1Ψn(t) = g(t), t ∈ [0, R]. (16)

Taking the collocation points ti = R 2i+1
2(n+1)

, i = 0, 1, · · · , n to process Equation (16), we

can gain Equation (17), i.e.,

ΛTAMα(ti)A
TΨn(ti) + a(t)ΛTPα(ti)Ψn(ti) + b(ti)Λ

TP1Ψn(ti) = g(ti). (17)

Solving Equation (17) by Newton method [12], we can gain the vector Λ=[λ0, λ1, · · · , λn]T.
Subsequently, numerical solution un(t) = ΛTΨn(t) of Equation (1) is obtained.

6. The Numerical Example and Result Analysis. In this section, we verify the effi-
ciency of our method to support above theoretical discussion. We compare the numerical
solution with the analytical solution. The results indicate that our method is a powerful
tool for solving variable order FDE. In this section, the notation

ε = max
i=0,1,··· ,n

|y(ti) − un(ti)|

is used to show the precision of our proposed algorithm, where ti = R 2i+1
2(n+1)

, i =
0, 1, · · · , n.

Example 6.1. Consider the following nonlinear variable order FDE:{
D

sin t
4 y2(t) + (t + 1)D

t
4 y(t) + t2y′(t) = g(t)

y(0) = 0, t ∈ [0, 3]

where

g(t) =
128t2−

sin t
4 [48(t + 2)2 − 4(3t + 7) sin t + (sin t)2)]

(sin t − 16)(sin t − 12)(sin t − 8)(sin t − 4)Γ
(
1 − sin t

4

)
+

8t1−
t
4 (t + 1)(3t + 8)

(t − 8)(t − 4)Γ
(
1 − t

4

) + 2t3 + 2t2.

The exact solution is y(t) = t2 + 2t. We find the numerical solution of Example 6.1 in
MATLAB 2012 by our method.

Table 1. Computational results of Example 6.1 for different values of n

t Λ ε

n = 3 [5.8125, 3.7500, 0.5625, 0.0000]T 1.7764e-15

n = 4 [5.8125, 3.7500, 0.5625, 0.0000, 0.0000]T 7.1054e-15

n = 5 [5.8125, 3.7500, 0.5625,−0.0000, 0.0000,−0.0000]T 5.2958e-14

n = 6 [5.8125, 3.7500, 0.5625,−0.0000,−0.0000,−0.0000,−0.0000]T 1.6115e-13

The computational results are shown in Table 1 and Figure 1. As seen from Table 1, the
vector Λ obtained is mainly composed of three terms, namely λ0 = 5.8125, λ1 = 3.7500,
and λ2 = 0.5625. This is in agreement with the exact solution y(t) = t2 + 2t, because the
exact solution is a polynomial of the 2nd degree. Furthermore, every value of ε is very
small for different values of n. In addition, with n increasing, the values of ε are gradually
bigger because of round-off error in MATLAB. Therefore, the approximation effect of
n = 3 is best for different values of n. Therefore, we can conclude that only a small
number of the second kind of Chebyshev polynomials needed can reach high precision.
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Figure 1. The exact solution and numerical solution of Example 6.1 for
different values of n

In Figure 1, we have plotted the exact and the numerical solutions for different values
of n respectively. It is evident that the numerical solution converges to the exact solution
for each value of n. Furthermore, the numerical solutions are in good agreement with the
exact solution. When n = 3, there has already been a good approximation effect, which
verifies the correction and high efficiency of our method.

7. Conclusions. In this paper, we present a numerical method in solving the variable
order nonlinear FDE with the second kind of Chebyshev polynomials. Taking advantage
of the definition of the variable order fraction derivative and the simplicity of the second
kind of Chebyshev polynomials, we transform the FDE into an algebraic system. By
solving the algebraic system, the numerical solution is acquired. Numerical example
shows that the numerical solution is in very good coincidence with the exact solution.
The presented method can also be used to solve two-dimensional variable order fractional
partial differential equations, which is left for further research.
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