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Abstract. In this paper, the problem of how to make decisions without any prior private
information of both the primary user (PU) and the secondary user (SU) (both called
decision-makers) during the dynamic bilateral bargaining process in cooperative spectrum
sharing networks has been studied. A practical decision-making model (PDMM) has
been proposed. In order to explain PDMM more clearly, firstly, an one-stage multi-slot
bilateral bargaining model (OMBBM) has been given, where only the PU has a chance
to propose a bid to the SU while the SU has no opportunity to propose a bid to the
PU in each slot. Then, we have proposed PDMM, also called a multi-stage multi-slot
bilateral bargaining model (MMBBM), to describe decision-makers’ bidding strategies in
the general case, where both decision-makers have a right to propose their own bids to
each other for several times in each slot. An empirical belief updating rule has been used
to update the accepted probabilities of the bids provided by both decision-makers at each
stage based on the historical bidding data. The effects of PDMM can be shown by the
simulation results.
Keywords: Cooperative spectrum sharing networks, Bilateral bargaining, Incomplete
information, Belief updating

1. Introduction. Cooperative spectrum sharing (CSS) is a very promising way to im-
prove the spectrum efficiency [1], where cooperations between primary users (PUs) and
secondary users (SUs) are necessary. However, due to the costs (e.g., battery energy
expenditure) of relaying packets for PUs, SUs have no incentive to cooperate with PUs
if SUs cannot obtain any compensation from the cooperations [2]. Therefore, a proper
resource allocation mechanism is needed to satisfy the requirements of PUs and SUs in the
cooperations. Adopting market mechanisms to study this resource allocation problem is a
natural idea. As a result, there are some market mechanisms which have been introduced
in several previous works about resource allocation problems in CSS [1, 2, 3, 4]. From the
view of the number of decision-makers in CSS, the system models which consist of one
PU and multiple SUs have been studied in [3, 4]. In [3], two auction mechanisms (the
signal-noise ratio (SNR) auction and the power auction) have been proposed, the exis-
tences of Nash equilibrium for these two models have been proved. In [4], the interactions
among one PU and multiple SUs have been modeled as a labor market using contract
theory. The optimal contracts have been designed for both weakly and strongly incom-
plete information scenarios. However, in [1, 2], the authors consider that the general CSS
with multiple PUs and multiple SUs could be decomposed into multiple pairs of one PU
and one SU. This assumption is reasonable because each SU will only cooperate with PUs
nearby for providing good relay services to these PUs [2]. Hence, under this assumption,
non-cooperative bargaining theory is a very suitable mathematical tool to study the in-
teraction between one PU and one SU in the cooperation, which is also a key point in this
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paper. In addition, in [1, 2], a dynamic bargaining with incomplete information model
between the PU and the SU has been proposed, where incomplete information means that
the PU does not know the SU’s energy cost but knows the probability distribution of the
SU’s energy cost. However, in practice, the PU and the SU may have no prior private
information of its opponent’s costs (including costs’ probability distributions) and real
profits. This practical case has not been considered in [1, 2]. Furthermore, this problem
has not yet been mentioned in other previous works which are based on non-cooperative
bargaining theory. In [5], the authors have analyzed the situation where the buyer’s
private information is uncertain to the seller, whereas the seller’s private information is
common knowledge. However, in some situations, the seller’s private information cannot
be known by the buyer. In [6], two decision-making models based on optimal stopping
theory have been proposed on the side of the buyer, which means the seller’s bargaining
strategies have not been considered in these models. Therefore, we will propose a more
practical decision-making model to analyze the interaction between the PU and the SU
in the dynamic bilateral bargaining process.

In this paper, we assume decision-makers are rational and risk-neutral. This is a com-
mon assumption in decision-making models [2, 6], which means decision-makers will pur-
sue their own maximal benefits and make decisions based on the expected profits. Then,
PDMM for the dynamic bilateral bargaining process is proposed, where any prior private
information of the decision-makers is not required. The remainder of this paper is or-
ganized as follows. The system model is described in Section 2. In Section 3, OMBBM
firstly has been given and then PDMM has been proposed. In Section 4, an existing belief
updating scheme has been used in our proposed models. The simulation results are shown
in Section 5. Finally, Section 6 concludes this paper.

2. System Model. Consider a CSS network with one PU pair including PU’s transmit-
ter (PT ) and receiver (PR) and one SU pair including SU’s transmitter (ST ) and receiver
(SR). An illustration of the system model has been shown in Figure 1. We further assume
the PU operates in the slot transmission structure and let T denote the total slots. In
Figure 1, hp, hs, hps and hsp denote the channel gains of the links PT − PR, ST − SR,
PT − ST and ST − PR, respectively. All channel gains are fixed in each slot but may
be different in different slots (block-fading). In CSS, the PU can provide some spectrum
resources for the SU and the SU will help the PU to improve its data rates in return.
A bargaining process is used to decide how much spectrum resource (e.g., channel used
time) the PU will give to the SU in their cooperation, which has multiple bargaining
stages in each slot.

As a result, there are three cases in each slot: (a) if the PU estimates that bargaining
with the SU cannot improve its data rate before the start of the bargaining process, it will
transmit its data by itself (also called no bargaining); (b) the PU bargains with the SU for
the relay and an agreement is not reached until the last stage (also called bargaining but
failure); (c) the PU bargains with the SU for the relay and an agreement is reached at some
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Figure 1. The cooperation between one PU pair and one SU pair
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stage (also called bargaining and success). An illustration of three cases is shown in Figure
2. In case (a) and case (b), the PU’s transmission rate in slot t is Rt

dir = log2(1 + Pth
t
p);

in case (c), under the cooperation with the SU, the PU’s transmission rate in slot t

is Rt
r = 1

2
log2

(
1 + Pth

t
p +

PtPsht
psht

sp

Ptht
ps+Psht

sp+1

)
[2]. The SU’s transmission rate in slot t is

Rt
s = log2(1 + Psh

t
s). Here, Pt and Ps denote the PU’s transmitting power level and the

SU’s transmitting power level, respectively. The duration of each slot is normalized to be
1 and let N denote the maximal bargaining stages in each slot. τ (τ < 1) denotes the
overhead due to each bargaining stage.

3. Bilateral Bargaining Model under Incomplete Information. In OMBBM, when
the PU provides a bid to the SU and the SU has only two choices (to accept the bid or
to reject the bid) in each slot. As a result, no matter which strategy the SU chooses, the
bargaining process in this slot will end and the bargaining process in the next slot begins.
In PDMM (also called MMBBM), both the PU and the SU are allowed to propose the
bids for several times in each slot, which is the general case of OMBBM.

3.1. One-stage multi-slot bilateral bargaining model. Before the start of the bar-
gaining process, the PU needs to make a decision about whether or not to bargain with
the SU. Assume hp, hps and hsp in each slot can be obtained by some proper feedback
mechanism [2] before the PU making a decision. In OMBBM (N = 1), consider if the
PU sends αp,1(t) as a bid to the SU, the SU will decide to accept αp,1(t) or reject it.
Here, αp,1(t) (0 ≤ αp,1(t) ≤ 1) denotes the fraction of the remaining transmission time
in each slot, where αp,1(t) = 0 means the PU will not give transmission time to the SU
and αp,1(t) = 1 means the PU will give the SU total remaining transmission time; for
example, in OMBBM, the total remaining transmission time is (1 − τ). If the SU rejects
αp,1(t), the PU will transmit its data by itself (case (b)), which means the PU’s profit is
(1− τ)Rt

dir. If the SU accepts αp,1(t), the PU’s profit is (1− τ) (1 − αp,1(t))R
t
r (case (c)).

Therefore, when the PU gives αp,1(t) to the SU, the PU’s expected profit of bargaining
with the SU in slot t is

U t
p(αp,1(t)) = (1 − τ)Rt

dirProb
t,1
PR(αp,1(t)) + (1 − τ)(1 − αp,1(t))R

t
rProb

t,1
PA(αp,1(t)) (1)

where Probt,1PA(αp,1(t)) and Probt,1PR(αp,1(t)) denote the accepted and rejected probability of

αp,1(t) by the SU in slot t, respectively. Obviously, Probt,1PA(αp,1(t)) = 1−Probt,1PR(αp,1(t)).
If the PU finds max(1) > Rt

dir, the PU will send α∗
p,1(t) = arg max(1) to the SU for the

maximal profits, which means bargaining with the SU maybe improve the PU’s profits
compared to the case (a). Otherwise, the PU has no need to bargain with the SU in slot t
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(case (a)) and goes to the next slot t+1. In Section 4, we will discuss the problems of how
to calculate Probt,1PA(αp,1(t)) only using the bargaining historical data and find α∗

p,1(t) of (1)
in detail. After the SU receiving α∗

p,1(t), the SU can calculate its own profit and decides to

accept α∗
p,1(t) or reject it. The SU’s profit is us(α

∗
p,1(t)) = (1−τ)(α∗

p,1(t)R
t
s−

1+α∗
p,1(t)

2
PsC),

where C is the SU’s energy cost per watt.
1+α∗

p,1(t)

2
PsC denotes the SU’s all energy cost

including the energy costs of relaying the PU’s data and transmitting the SU’s own data
[2]. Note that if the PU does not send any bid to the SU, the SU will obtain nothing
(us = 0). Therefore, in OMBBM, if and only if α∗

p,1(t) makes us(α
∗
p,1(t)) > 0, then the

SU will accept α∗
p,1(t). Otherwise, the SU will reject α∗

p,1(t). Here, we also assume the SU
knows hs by a proper feedback mechanism [2].

3.2. Multi-stage multi-slot bilateral bargaining model. OMBBM is the foundation
of understanding of MMBBM which is more complex than the former. Here, we assume
the maximal bargaining stage in each slot isN

(
N ≤ ⌊ 1

τ
⌋
)

(e.g., 1, 2, 3, . . . , n, . . . , N) which
is common knowledge to both the PU and the SU. The bargaining process in each slot will
continue to the last stage unless an agreement is reached at some stage. An illustration
of MMBBM is shown in Figure 3. Here, the PU must make a decision at the first stage
in MMBBM. At first, we analyze this model from the PU’s perspective at n (n > 1)
stage. The PU will consider making a decision among three strategies when the PU
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Figure 3. An illustration of MMBBM in each slot
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receives the SU’s bid α∗
s,n−1(t) at n − 1 stage: (i) accepting α∗

s,n−1(t) at n − 1 stage and
the bargaining process in this slot ends; (ii) proposing a new bid to the SU at n stage
after rejecting α∗

s,n−1(t) at n − 1 stage; (iii) rejecting α∗
s,n−1(t) only and does not send a

new bid to the SU at n stage. Here, α∗
s,n−1(t) also denotes the fraction of the remaining

transmission time in each slot. If the PU accepts α∗
s,n−1(t) at n− 1 stage, the PU’s profit

is up

(
α∗

s,n−1(t)
)

= (1 − (n − 1)τ)
(
1 − α∗

s,n−1(t)
)
Rt

r. Note that once the PU decides to
bargain with the SU, the least profit is (1−Nτ)Rt

dir, which means no agreement has been
reached after N stages and the PU will transmit its data by itself. Hence, the PU’s profit
is no less than (1 − Nτ)Rt

dir. Assume if the PU’s bid αp,n(t) is accepted by the SU at
stage n, the PU’s profit is (1 − nτ) (1 − αp,n(t))Rt

r. Therefore, if the PU gives a new bid
αp,n(t) to the SU, the PU’s approximate expected profit at n stage in slot t is,

U t
p (αp,n(t)) = ΨRt

dirProb
t,n
PR (αp,n(t)) + (1 − nτ) (1 − αp,n(t))Rt

rProb
t,n
PA (αp,n(t)) (2)

where Ψ = 1 −Nτ . Note that if max(2) > max
(
ΨRt

dir, up(α
∗
s,n−1(t))

)
, the PU will reject

α∗
s,n−1(t) and proposes a new bid α∗

p,n(t) = arg max(2) to the SU at stage n. In the other
case, when max(2) ≤ max(ΨRt

dir, up(α
∗
s,n−1(t))), if ΨRt

dir > up(α
∗
s,n−1(t)), the PU will

reject SU’s bid and does not propose a new bid to the SU (in Figure 3, using the NO bid
to denote this case); otherwise, the PU will accept α∗

s,n−1(t) and the bargaining process
ends at n− 1 stage in this slot. For the PU, for n = 1 stage in Figure 3, the PU needs to
make a decision about whether or not to bargain with the SU like OMBBM, where the
PU will bargain with the SU if max(2) > Rt

dir; otherwise, no bargaining is in this slot and
the next slot begins. Note that the PU also maybe propose a new bid to the SU, even if
the SU does not propose a bid to the PU at n− 1 stage (NO bid in Figure 3). Under this
situation, max(2) > ΨRt

dir must be satisfied.
From the view of the SU, if the PU sends a bid α∗

p,n(t) to the SU at n stage, the SU will
also estimate the expected profit if it proposes a new bid to the PU after rejecting α∗

p,n(t).
However, if the SU’s bid is rejected by the PU at n + 1 stage, the SU’s least profit is 0.
This is because even if an agreement is not reached until N stage and the SU’s profit is
also 0. Hence, the SU’s expected profit is

U t
s(αs,n+1(t)) = us (αs,n+1(t))Prob

t,n+1
SA (αs,n+1(t)) (3)

where Probt,n+1
SA (αs,n+1(t)) denotes the probability of αs,n+1(t) being accepted by the PU

at n+1 stage in slot t and us(αs,n+1(t)) = (1−(n+1)τ)
(
αs,n+1(t)R

t
s −

1+αs,n+1(t)

2
PsC

)
. If

max(3) > max(us(α
∗
p,n(t)), 0), the SU will reject α∗

p,n(t) and proposes a new bid α∗
s,n+1(t) =

arg max(3) to the PU at n + 1 stage. In the other case, max(3) ≤ max(us(α
∗
p,n(t)), 0), if

us(α
∗
p,n(t)) < 0, the SU will reject α∗

p,n(t) and does not propose a new bid α∗
s,n+1(t) to the

PU at n+ 1 stage (in Figure 3, using NO bid to denote this case); otherwise, the SU will
accept α∗

p,n(t) and the bargaining process ends at n stage in slot t. Note that the SU also
can propose a new bid to the PU, even if the PU does not propose a bid to the SU at n
stage (NO bid in Figure 3), which requires max(3) > 0.

4. Belief Updating Scheme. In this section, we mainly discuss how to calculate the
probabilities of the bids being accepted by the users online and the maximal value of
(1), (2) and (3). As mentioned before, both the PU and the SU have no prior private
information of each other. Therefore, we should build up updating beliefs of each other.
Here, we adopt an empirical belief updating rule from the double auction model [7],
which has been also used in [8] to set optimal reserve prices in spectrum double auctions.
However, this rule has not yet been used in bargaining problems. From the respective
of the PU, the SU always requires higher bids to pursuit higher profits. As a result, we
have the following observations: if a bid ρ > αp,n(t) is rejected, the bid αp,n(t) will also
be rejected; if a bid ρ < αp,n(t) is accepted, the bid αp,n(t) will also be accepted. Based
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on these facts, the PU sends a bid αp,n(t) to the SU and the probability of αp,n(t) being
accepted by the SU is,

Probt,nPA(αp,n(t)) =

∑
ρ≤αp,n(t) ψA(ρ)∑

ρ≤αp,n(t) ψA(ρ) +
∑

ρ>αp,n(t) ψR(ρ)
(4)

where ψA(ρ) denotes the accepted number of the bid ρ and ψR(ρ) denotes the rejected
number of the bid ρ in the PU’s bid history until n − 1 stage in the slot t. In general,
in order to find α∗

p,n(t) for the PU at each stage in slot t, we can use the first derivative
of (2). However, it is difficult to obtain the first order conditions of (2) because of the
updating information. Note that if αp,n(t) = 0, (2) = ΨRt

dir; if αp,n(t) = 1, we also have
(2) = ΨRt

dir. Therefore, we can find α∗
p,n(t) of (2) in the interval (0, 1) step by step if

the PU wants to bargain with the SU and the search step length k = 0.001, which means
α∗

p,n(t) is an approximate value in fact. Note that we need to initialize the search point
which is closer to 0 in the process of finding α∗

p,n(t). In the simulation part, we initialize
the first accepted bid α∗

p,n=1(t = 1) = 0.02 for different N and the curves of (2) have been
shown.

From the respective of the SU, the PU always wants to use lower bids to pursue higher
profits and then we also have following observations: if a bid κ > αs,n+1(t) is accepted, the
bid αs,n+1(t) will also be accepted; if a bid κ < αs,n+1(t) is rejected and the bid αs,n+1(t)
will also be rejected. Based on these facts, the SU sends a bid αs,n+1(t) to the PU and
the probability of αs,n+1(t) being accepted by the PU is,

Probt,n+1
SA (αs,n+1(t)) =

∑
κ≥αs,n+1(t) µA(κ)∑

κ≥αs,n+1(t) µA(κ) +
∑

κ<αs,n+1(t) µR(κ)
(5)

where µA(κ) denotes the accepted number of the bid κ and µR(κ) denotes the rejected
number of the bid κ in the SU’s bidding history until n stage in the slot t. Note that
when αs,n+1(t) = 0, then (3) < 0; when αs,n+1(t) = 1, then (3) = 0. If the SU wants
to propose α∗

s,n+1(t) to the PU, (3) > 0 must be satisfied at first. Therefore, α∗
s,n+1(t) of

(3) can be also found in the interval (0, 1) step by step if the SU wants to bargain with
the PU, which also means α∗

s,n+1(t) is an approximate value in fact. Here, we also set the
search step length k = 0.001, initialize the first accepted bid α∗

s,n+1=2(t = 1) = 0.98 and
show the curves of (3) in the simulation part.

5. Simulation Results. In order to show the performances of PDMM more clearly, we
set Pt = Ps = 1, T = 1000, τ = 0.1 and C is from 1 to 10. Rdir, Rr and Rs are uniformly
distributed in [1, 5], [15, 20] and [5, 10], respectively. In fact, PDMM has no constraint on
these parameters.

Firstly, we show the averaged profits over T of the PU and the SU at different Cs in
Figure 4. We can find the bargaining process will bring both the PU and the SU into
a win-win situation which has been also shown in [2], which means our proposed model
is effective. With C increasing, the PU’s and the SU’s averaged profits are decreasing.
Odd stages are good for the PU and even stages are beneficial to the SU. In Figure 5(a),
we show the bids’ changed process of both sides. Here, we set C = 2 and compare the
bids of MMBBM (N = 2) with that of OMBBM (N = 1). In Figure 5(a), we can also
find accepted bids in both models will be stable with t increasing. In MMBBM (N = 2),
the PU will gradually increase its bids and the SU will also gradually decrease its bids
for agreements. At last, the PU sends higher bids to the SU and the SU has no need
to propose new bids to the PU at the second stage. When N > 2, the bids’ changed
processes are hard to be shown in figures. Therefore, the averaged agreed prices over the
times of agreements (M) for different N have been shown in Figure 5(b). Here, we can
find no agreement has been reached when C ≥ 10.
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Figure 6. Averaged expected profits over T for different Cs (N = 2)

In order to understand the process of searching the optimal bids of (1), (2) and (3) in
the interval (0, 1) more clearly, taking N = 2 for example, in this model, both the PU
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and SU have no more than one opportunity to propose their own bids. Here, we show
the averaged values over T of ((2) − Rt

dir) which denotes the increased expected profits
in Figure 6(a) and (3) in Figure 6(b) for each bid in (0, 1). Note that the PU’s bids are
increasing from lower bids to higher bids and the SU’s bids are on the contrary.

6. Conclusion. In this paper, we have proposed an online bargaining decision-making
model (also called PDMM), in which there is no need to assume the types of decision-
makers and probability distributions of decision-makers’ private information. In PDMM,
decision-makers can reach agreement when the SU’s energy costs are not too high. There-
fore, PDMM is more practical than other bargaining decision-making models, which can
be used in practical CSS networks. The situation in which one PU sequentially bargains
with multiple SUs one by one will be investigated in our future works.
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