NEW FULLY SECURE PREDICATE ONLY ENCRYPTION SCHEME SUPPORTING INNER PRODUCT

Yu Zhang and Songfeng Lu
School of Computer Science and Technology Huazhong University of Science and Technology No. 1037, Luoyu Road, Wuhan 430074, P. R. China
willow1223@126.com; lusongfeng@hotmail.com

Received December 2015; accepted March 2016

Abstract

In a predicate encryption scheme, a secret key associated with a predicate f can decrypt a ciphertext corresponding to an attribute I when $f(I)=1$. The predicate encryption scheme which supports inner product enables more complex evaluation on $C N F / D N F$ formulae. Recently, a fully secure predicate encryption scheme supporting inner product was presented by Okamoto et al. When converting this scheme into a searchable encryption scheme, it should be found that the space and time complexity in this scheme can be improved. According to this issue, we propose a new fully secure predicate encryption scheme supporting inner product. Based on our scheme, a more efficient searchable encryption scheme can be created with better space and time complexity.

Keywords: Public key system, Pairing-based cryptography, Predicate encryption, Fully security

1. Introduction. In the predicate encryption supporting inner product (IPE) scheme, each ciphertext associated with an attribute vector \vec{x} can be decrypted by secret keys corresponding to predicate vector \vec{v} if and only if $\vec{v} \cdot \vec{x}=0$. The first IPE scheme has been proposed in [1]; however, they were proven in the selective security model. Recently, fully secure PE was proposed by Okamoto and Takashima [2]. The IPE scheme can be easily changed to be a searchable encryption scheme [5]. When we obtain a searchable encryption scheme by making use of an IPE scheme, the IPE scheme should be ensure that the attribute is hiding, and the message will be neglected since the message should be encrypted by applying standard public key encryption system, such as RSA. The IPE scheme which hides the attribute and sets message as 1 is called predicate-only IPE introduced in [1]. In this paper, we propose a new fully secure predicate-only IPE scheme. Compared with the searchable encryption scheme based on the previous scheme, the efficiency of the searchable encryption scheme based on our scheme is improved.

This paper is organized as follows. In Section 2, we give a brief introduction of bilinear groups and state the complexity assumptions. In Section 3, we will propose our scheme and the security proof of our scheme, and give a comparison to show the novelty of our scheme. The conclusion is presented in Section 4.

2. Preliminaries.

2.1. Composite order bilinear groups and complexity assumptions. Composite order bilinear groups were first used in cryptographic construction in [3]. We use groups whose order N is a product of four (distinct) prime and a generator \mathfrak{g} which takes as input a security parameter 1^{n} and outputs a description $I=\left(p_{1}, p_{2}, p_{3}, p_{4}, G, G_{T}, \hat{e}\right)$, where p_{1}, p_{2}, p_{3}, p_{4} are distinct primes, G and G_{T} are cyclic groups of order $N=p_{1} p_{2} p_{3} p_{4}$, and $\hat{e}: G \times G \rightarrow G_{T}$ is a non-degenerate bilinear map such that:

1) Bilinear: $\hat{e}\left(g^{a}, h^{b}\right)=\hat{e}(g, h)^{a b}$, where $g, h \in G$ and $a, b \in Z_{N}$;
2) Non-degenerate: If g is a generator of G then $\hat{e}(g, g)$ is a generator of G_{T};
3) Computable: There is an efficient algorithm to compute $\hat{e}(g, h)$, for any $g, h \in G$.

We further require that the group operations in G and G_{T}, as well as the bilinear map \hat{e}, are computable in deterministic polynomial time with respect to n. Furthermore, we assume that the descriptions of G and G_{T} include generators of G and G_{T}, respectively. For $S \subseteq\{1,2,3,4\}$, we denote by $G_{\prod_{i \in S} p_{i}}$ the subgroup of order $\prod_{i \in S} p_{i}$. Suppose that $h_{1} \in G_{\prod_{i \in S_{1}} p_{i}}$ and $h_{2} \in G_{\prod_{i \in S_{2}} p_{i}}$, where $S_{1}, S_{2} \subseteq\{1,2,3,4\}$. It is easy to verify that $\hat{e}\left(h_{1}, h_{2}\right)=1$ if $\operatorname{gcd}\left(\prod_{i \in S_{1}} p_{i} \times \prod_{i \in S_{2}} p_{i} \mid N^{2}, N\right)=N$. This is called the orthogonality property and is a crucial tool in our construction.

For proving the security of our construction, a General Subgroup Decision (GSD) complexity assumption presented in [3] is given as follows:
GSD Assumption. Let $S_{0}, S_{1}, S_{2}, \ldots, S_{k}$ be non-empty subset of $\{1,2,3,4\}$ such that for each $j \in[2, k]$, either $S_{j} \cap S_{0}, S_{j} \cap S_{1}$ are both empty or $S_{j} \cap S_{0}, S_{j} \cap S_{1}$ are both not empty. Given a group generator \mathfrak{g}, we define the following distribution:

$$
\begin{gathered}
\mathbb{G}=\left(N=p_{1} p_{2} p_{3} p_{4}, G, G_{T}, \hat{e}\right) \stackrel{R}{\leftarrow} \mathfrak{g}, \quad T_{0} \stackrel{R}{\leftarrow} G_{\prod_{i \in S_{0}} p_{i}}, \quad T_{1} \stackrel{R}{\leftarrow} G_{\prod_{i \in S_{1}} p_{i}}, \\
Z_{2} \stackrel{R}{\leftarrow} G_{\prod_{i \in S_{2}} p_{i}}, \ldots, Z_{k} \stackrel{R}{\leftarrow} G_{\prod_{i \in S_{k}} p_{i}}, \quad D=\left(\mathbb{G}, Z_{2}, Z_{3}, \ldots, Z_{k}\right) .
\end{gathered}
$$

We define the advantage of an algorithm A in breaking GSD Assumption to be:

$$
\begin{equation*}
A d v 1_{\mathfrak{g}, A}(n)=\operatorname{Pr}\left[A\left(D, T_{0}\right)=1\right]-\operatorname{Pr}\left[A\left(D, T_{1}\right)=1\right] . \tag{1}
\end{equation*}
$$

Definition 2.1. For all probabilistic polynomial-time algorithms A, if $A d v 1_{\mathfrak{g}, A}(n)$ is a negligible function of n, then we can say that GSD Assumption holds for generator \mathfrak{g}.

3. Proposed IPE Scheme.

3.1. Construction. Based on the IPE model introduced in [1], our IPE scheme works as follows.
Setup. Choosing a bilinear group G of order $N=p_{1} p_{2} p_{3} p_{4}$ (where $p_{1}, p_{2}, p_{3}, p_{4}$ are distinct primes) and $\alpha_{i}, \beta_{i} \in Z_{N}, U_{1}, A_{1} \in G_{p_{1}}$ and $A_{4 i}, B_{4 i}, U_{4}$ and $g_{4} \in G_{p_{4}}$ where $i \in[1, n]$, the public key $(p k)$ is published as:

$$
p k=\left\{N, U_{1} U_{4}, A_{1}^{\beta_{i}} A_{4 i}, A_{1}^{\alpha_{i}} B_{4 i}, g_{4}\right\} .
$$

The master secret keys is $m s k=\left\{\alpha_{i}, \beta_{i}, U_{1}, A_{1}, g_{3}\right\}$ where g_{3} is a generator of $G_{p_{3}}$.
$\operatorname{Encrypt}(\vec{x}, p k)$. Choosing $n+2$ random elements $s, d_{1}, d_{2}, \ldots, d_{n}, d_{n+1} \in Z_{N}$, for a vector $\vec{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the ciphertext $C=\left(C_{11}, C_{12}, \ldots, C_{1 n}, C_{2}\right)$ is created as:

$$
C_{1 i}=\left(A_{1}{ }^{\beta_{i}} A_{4 i}\right)^{s x_{i}} \times\left(A_{1}{ }^{\alpha_{i}} B_{4 i}\right)^{s} \times g_{4}{ }^{d_{i}}=A_{1}{ }^{s\left(\beta_{i} x_{i}+\alpha_{i}\right)} C_{4 i}, \quad C_{2}=\left(U_{1} U_{4}\right)^{s} \times g_{4}^{d_{n+1}}=U_{1}^{s} C_{4} .
$$

In ciphertext $C, C_{4 i}=A_{4 i}^{s x_{i}} B_{4 i}^{s} g_{4}{ }^{d_{i}}$ for each $i \in[1, n]$ and $C_{4}=g_{4}^{d_{n+1}} U_{4}^{s}$.
$\operatorname{KeyGen}(\vec{v}, m s k)$. The key generation algorithm chooses $r \in Z_{N}$ and generates random elements $R_{3 i}, R_{3}$ by using $g_{p 3}$ and raising it to the random exponents modulo N. For a vector $\vec{v}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, the key $s k_{\vec{v}}=\left(K_{11}, K_{12}, \ldots, K_{1 n}, K_{2}\right)$ is created as:

$$
K_{1 i}=U_{1}{ }^{r} v_{i} \bar{p}_{i} R_{3 i}, \quad K_{2}=A_{1}^{r \sum_{i=1}^{n} \frac{\alpha_{i} v_{i}}{\beta_{i}}} R_{3},
$$

where $i \in[1, n]$.
Decryption. The algorithm computes $d=\frac{\hat{e}\left(C_{2}, K_{2}\right)}{\prod_{i=1}^{n} \hat{e}\left(C_{1 i}, K_{1 i}\right)}$. If $\vec{x} \cdot \vec{v}=0$, then $d=1$.
Correctness. Let C and $s k_{\vec{v}}$ be as the above, then

$$
d=\frac{\hat{e}\left(C_{2}, K_{2}\right)}{\prod_{i=1}^{n} \hat{e}\left(C_{1 i}, K_{1 i}\right)}=\frac{\hat{e}\left(U_{1}{ }^{s} C_{4}, A_{1}{ }^{r \sum_{i=1}^{n} \frac{\alpha_{i} v_{i}}{\beta_{i}}} R_{3}\right)}{\prod_{i=1}^{n} \hat{e}\left(A_{1}{ }^{s\left(\beta_{i} x_{i}+\alpha_{i}\right)} C_{4 i}, U_{1}^{r v_{i}} R_{3 i}\right)}=\frac{1}{\hat{e}\left(A_{1}, U_{1}\right)^{r s \sum_{i=1}^{n} x_{i} v_{i}}} .
$$

Obviously, if $\vec{x} \cdot \vec{v}=0$, then $d=1$.
3.2. Security. To prove the security of our IPE system, according to the dual system encryption introduced in [6], we will introduce a special key which we call it s-key and a special ciphertext which we call it s-ciphertext in our scheme. These will not be applied in the real IPE system, but they will be used in the proof.
s-key: Let g_{2} be a generator of the subgroup $G_{p_{2}}$. An s-key is created as follows. A normal key $K_{11}^{\prime}, K_{12}^{\prime}, \ldots, K_{1 n}^{\prime}, K_{2}^{\prime}$ is constructed by the keyGen algorithm. Choosing a random element $\xi \in Z_{N}$ and setting $z_{k i}=u \frac{v_{i}}{\beta_{i}}$ for each $i \in[1, n]$ and $z_{k}=a \sum_{i=1}^{n} \frac{\alpha_{i} v_{i}}{\beta_{i}}, K_{1 i}$ is set to be $K_{1 i}^{\prime} g_{2}^{\xi z_{k i}}$ for each $i \in[1, n]$ and K_{2} is set to be $K_{2}^{\prime} g_{2}^{\xi z_{k}}$, where $\vec{v}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the vector used in constructing normal key and $a, u, \alpha_{i}, \beta_{i}$ are required from msk $=$ $\left\{A_{1}=g_{1}^{a}, U_{1}=g_{1}^{u}, \alpha_{i}, \beta_{i}, g_{3}\right\}$. The s-key is $\left\{K_{11}, K_{12}, \ldots, K_{1 n}, K_{2}\right\}$.
s-ciphertext: Let g_{2} be a generator of the subgroup $G_{p_{2}}$. An s-ciphertext is created as follows. For a vector \vec{x}, a normal ciphertext $C_{0}^{\prime}, C_{11}^{\prime}, C_{12}^{\prime}, \ldots, C_{1 n}^{\prime}, C_{2}^{\prime}$ is constructed by the encryption algorithm. Given two random elements $s_{0}, s_{1} \in Z_{N}$, for two distinct elements $\theta_{0}, \theta_{1} \in\left\{s_{0}, s_{1}, 0\right\}$, suppose that $\vec{x}^{(0)}$ and $\vec{x}^{(1)}$ are two challenge vectors and msk $=$ $\left\{A_{1}=g_{1}^{a}, U_{1}=g_{1}^{u}, \alpha_{i}, \beta_{i}, g_{3}\right\}$, we compute $z_{c i}=\theta_{0} a\left(\beta_{i} x_{i}^{(0)}+\alpha_{i}\right)+\theta_{1} a\left(\beta_{i} x_{i}^{(1)}+\alpha_{i}\right)$ for each $i \in[1, n]$ and $z_{c}=u\left(\theta_{0}+\theta_{1}\right)$. Let $C_{1 i}=C_{1 i}^{\prime} g_{2}^{z_{c i}}$ for each $i \in[1, n]$ and $C_{2}=C_{2}^{\prime} g_{2}^{z_{c}}$. The s-ciphertext is $\left\{C_{0}, C_{11}, C_{12}, \ldots, C_{1 n}, C_{2}\right\}$.

Obviously, for a vector \vec{v} which is orthogonal to the two challenge vectors, it must have $\sum_{i=1}^{n} z_{c i} z_{k i}=z_{c} z_{k} \bmod N$ where $z_{k 1}, z_{k 2}, \ldots, z_{k n}, z_{k}$ are chosen from the s-key of the vector \vec{v}. Then the decryption algorithm can still work.

The security proof relies on GSD Assumption. We will prove security by using a hybrid method which uses a sequence of games. These games are described as follows.

1) Game $_{\text {Real }}$. This game is the real security game which is introduced in [1].
2) $G a m e_{\text {Restricted }}$. This game is the same as the real game except that the attacker can not ask for keys for vector $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ satisfying $\vec{x} \cdot \vec{v}=\sum_{i=1}^{n} x_{i} v_{i}=0 \bmod p_{2}$, where $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is one of the challenge vectors. We will retain this stronger restriction throughout the subsequent games.
3) $G a m e_{k}$. For each $k \in[0, q]$, we define $G a m e_{k}$ which is similar to $G a m e_{\text {Restricted }}$ except that the ciphertext given to A is s-ciphertext and the first k keys are s-key. The rest keys are normal. In $G a m e_{0}$, all the keys given to A are normal and the ciphertext is s-ciphertext. In Game_{q}, the ciphertext and all of the keys are in the special form.
4) Game ${ }_{\text {Final }}$. This game is the same as $G a m e_{q}$ except the s-ciphertext. Given four random elements $m_{0}, m_{0}^{\prime}, m_{1}, m_{1}^{\prime} \in Z_{N}, n+1$ random elements $R_{41}, R_{42}, \ldots, R_{4 n}$, $R_{4} \in G_{p 4}$ and two challenge vectors $\vec{x}^{(0)}$ and $\vec{x}^{(1)}$, the s-ciphertext of challenge vector $\vec{x}^{(\beta)}$ is $C_{1 i}=A_{1}^{m_{0}\left(\beta_{i} x_{i}^{(0)}+\alpha_{i}\right)+m_{1}\left(\beta_{i} x_{i}^{(1)}+\alpha_{i}\right)} g_{2}^{m_{0}^{\prime} a\left(\beta_{i} x_{i}^{(0)}+\alpha_{i}\right)+m_{1}^{\prime} a\left(\beta_{i} x_{i}^{(1)}+\alpha_{i}\right)} R_{4 i}$ and $C_{2}=$ $U_{1}^{m_{0}+m_{1}} g_{2}^{u\left(m_{0}^{\prime}+m_{1}^{\prime}\right)} R_{4}$ where $i \in[1, n], \beta \in\{0,1\}$ and $a, u, \alpha_{i}, \beta_{i}$ are required from $M S K=\left\{A_{1}=g_{1}^{a}, U_{1}=g_{1}^{u}, \alpha_{i}, \beta_{i}, g_{3}\right\}$.
Obviously, Game $_{\text {Final }}$ is a game such that the ciphertext holds no information of β. We will show these games are indistinguishable in the following lemmas.

Lemma 3.1. Suppose that there exists a probabilistic polynomial time (PPT) algorithm A such that $A d v_{\text {Game }_{\text {Real }}}^{A}-A d v_{\text {Game }}^{\text {Restricted }} 1=\epsilon$. Then we can build a PPT algorithm B with advantage $\geq \frac{\epsilon}{3}$ in breaking GSD Assumption.

Proof: Given $D=\left(N=p_{1} p_{2} p_{3} p_{4}, G, G_{T}, \hat{e}, g_{1} \in G_{p 1}, g_{3} \in G_{p 3}, g_{4} \in G_{p 4}\right)$, B can simulate $G a m e_{\text {Real }}$ with A. With probability ϵ, A can generate vector \vec{v} and \vec{x} such that $\sum_{i=1}^{n} x_{i} v_{i} \bmod N \neq 0$ and $\sum_{i=1}^{n} x_{i} v_{i} \bmod p_{2}=0 . B$ uses these vectors to produce a nontrivial factor of N by computing $a=\operatorname{gcd}\left(\sum_{i=1}^{n} x_{i} v_{i}, N\right)$. We set $b=\frac{N}{a}$. Notice that p_{2} divides a and $N=a b=p_{1} p_{2} p_{3} p_{4}$, we consider three cases: Case 1: p_{1} divides b; Case 2: p_{1} cannot divide b and p_{4} can divide b; Case 3: $a=p_{1} p_{2} p_{4}$ and $b=p_{3}$.

At least one of these cases must occur with probability $\geq \frac{\epsilon}{3}$. In Case 1 , given D and T where $T \in G_{p_{1}}$ or $T \in G_{p_{1} p_{2}}, B$ computes T^{b}. If T^{b} is the identity element of G_{T}, then $T \in G_{p_{1}}$. Otherwise, $T \in G_{p_{1} p_{2}}$. Therefore, B can break the GSD Assumption.

Case 2 is the same as Case 1 except that $T \in G_{p_{4}}$ or $T \in G_{p_{2} p_{4}}$. B computes T^{b}. If T^{b} is the identity element of G_{T}, then $T \in G_{p_{4}}$. Otherwise, $T \in G_{p_{2} p_{4}}$.

In Case 3, given $D=\left(N=p_{1} p_{2} p_{3} p_{4}, G, G_{T}, \hat{e}, g_{1} \in G_{p 1}, g_{3} \in G_{p 3}, g_{4} \in G_{p 4}, D_{1} D_{2} \in\right.$ $\left.G_{p_{1} p_{2}}, B_{2} B_{3} \in G_{p_{2} p_{3}}\right)$ and T where $T \in G_{p_{1} p_{3}}$ or $T \in G_{p_{1} p_{2} p_{3}}, B$ computes $\hat{e}\left(T,\left(B_{2} B_{3}\right)^{b}\right)$. If $\hat{e}\left(T,\left(B_{2} B_{3}\right)^{b}\right)$ is the identity element of G_{T}, then $T \in G_{p_{1} p_{3}}$. Otherwise, $T \in G_{p_{1} p_{2} p_{3}} . \square$ Lemma 3.2. Suppose that there exists a PPT algorithm A such that Adv $_{\text {Game }}^{\text {Restricted }}$ $A d v_{\text {Game }_{0}}^{A}=\epsilon$. Then we can build a PPT algorithm B with advantage ϵ in breaking GSD Assumption.

Proof: Given $D=\left(N=p_{1} p_{2} p_{3} p_{4}, G, G_{T}, \hat{e}, g_{1} \in G_{p 1}, g_{3} \in G_{p 3}, g_{4} \in G_{p 4}\right)$, and T where $T \in G_{p_{1}}$ or $T \in G_{p_{1} p_{2}}, B$ can simulate $G a m e_{0}$ or Game Real with A. To generate the public key, B chooses random exponents $a, c, u, a_{i}, b_{i}, \alpha_{i}$ and $\beta_{i} \in Z_{N}$ for each $i \in[1, n]$ and sets $A_{1}{ }^{\beta_{i}} A_{4 i}=g_{1}{ }^{a \beta_{i}} g_{4}{ }^{b_{i}}, A_{1}{ }^{\alpha_{i}} B_{4 i}=g_{1}{ }^{a \alpha_{i}} g_{4}{ }^{a_{i}}$ and $U_{1} U_{4}=g_{1}^{u} g_{4}^{c}$ for each $i \in[1, n]$. Obviously, $U_{1}=g_{1}^{u}$. B sends public key $\left\{N, U_{1} U_{4}, A_{1}{ }^{\beta_{i}} A_{4 i}, A_{1}{ }^{\alpha_{i}} B_{4 i}, g_{4}\right\}$ to A. Each time A asks B to provide a key for a vector $\vec{v}^{(j)}=\left(v_{1}^{(j)}, v_{2}^{(j)}, \ldots, v_{n}^{(j)}\right), B$ chooses $n+2$ random exponents $r_{j}, c_{j 1}, c_{j 2}, \ldots, c_{j n+1}$ and sets $K_{1 i}=g_{1}^{u r_{j} \frac{v_{i}^{(j)}}{\beta_{i}}} g_{3}^{c_{j i}}=U_{1}^{r_{j} \frac{v_{i}^{(j)}}{\beta_{i}}} g_{3}^{c_{j i}}, K_{2}=A_{1}^{r_{j} \sum_{i=1}^{n} \frac{\alpha_{i} v_{v}^{(j)}}{\beta_{i}}} g_{3}^{c_{j n+1}}$ for each $i \in[1, n]$.

After that, A sends B two challenge vectors, $\vec{x}^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}\right)$ and $\vec{x}^{(1)}=$ $\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{n}^{(1)}\right)$. B randomly chooses a $\beta \in\{0,1\}$. Given $C_{41}, C_{42}, \ldots, C_{4 n}$ and $C_{4} \in G_{p_{4}}$ randomly (Random elements of $G_{P_{4}}$ can be obtained by raising g_{4} to random exponents modulo N), B generates the ciphertext as follows:

$$
C_{1 i}=T^{a\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)} C_{4 i} \text { and } C_{2}=T^{u} C_{4} \text { where } i \in[1, n] .
$$

If $T \in G_{p_{1} p_{2}}$, suppose that $T=g_{1}^{s} g_{2}^{s^{\prime}}$, then this is a s-ciphertext with $z_{c i}=s^{\prime} a\left(\beta_{i} x_{i}^{(\beta)}\right.$ $\left.+\alpha_{i}\right)$ and $z_{c}=s^{\prime} u$. Note that $\theta_{\beta}=s^{\prime}$ and $\theta_{1-\beta}=0$ where $\beta \in\{0,1\}$, this is distributed as in $G a m e_{0}$. If $T \in G_{p_{1}}$, this is a normal ciphertext. Therefore, if A can distinguish the $G^{\text {Game }}{ }_{\text {Real }}$ from $G a m e_{0}$ with advantage ϵ, then B can use the output of A to break GSD Assumption with advantage ϵ.
Lemma 3.3. Suppose that there exists a PPT algorithm A such that $A d v_{\text {Game }_{k-1}}^{A}-$ $A d v_{\text {Game }_{k}}^{A}=\epsilon$. Then we can build a PPT algorithm B with advantage ϵ in breaking GSD Assumption.

Proof: Given $D=\left(N=p_{1} p_{2} p_{3} p_{4}, G, G_{T}, \hat{e}, g_{1} \in G_{p 1}, g_{3} \in G_{p 3}, g_{4} \in G_{p 4}, D_{1} D_{2} \in\right.$ $\left.G_{p_{1} p_{2}}, B_{2} B_{3} \in G_{p_{2} p_{3}}\right)$ and T where $T \in G_{p_{1} p_{3}}$ or $T \in G_{p_{1} p_{2} p_{3}}, B$ can simulate $G a m e_{k-1}$ or $G a m e_{k}$ with A. Choosing random exponents $a, u, c, a_{i}, b_{i}, \alpha_{i}$ and $\beta_{i} \in Z_{N}$ for each $i \in[1, n], B$ sets $A_{1}{ }^{\beta_{i}} A_{4 i}=g_{1}{ }^{a \beta_{i}} g_{4}{ }^{b_{i}}, A_{1}{ }^{\alpha_{i}} B_{4 i}=g_{1}{ }^{a \alpha_{i}} g_{4}{ }^{a_{i}}$ and $U_{1} U_{4}=g_{1}^{u} g_{4}^{c}$ for each $i \in[1, n]$, and sends public key $\left\{N, U_{1} U_{4}, A_{1}{ }^{\beta_{i}} A_{4 i}, A_{1}{ }^{\alpha_{i}} B_{4 i}, g_{4}\right\}$ to A. When A requests the j-th key for vector $\vec{v}^{(j)}=\left(v_{1}^{(j)}, v_{2}^{(j)}, \ldots, v_{n}^{(j)}\right), B$ generates the normal key or the semi-function key for vector $v^{(j)}$.

For $j<k, B$ creates an s-key. Choosing random exponents $r_{j}, r_{j}^{\prime}, z_{j}$ and $t_{j i} \in Z_{N}$, for $i \in$ $[1, n], B$ sets $K_{1 i}=g_{1} \frac{u r_{j} v_{i}^{(j)}}{\beta_{i}}\left(B_{2} B_{3}\right)^{\frac{u r_{0}^{\prime} v_{i}^{(j)}}{\beta_{i}}} g_{3}^{t_{j i}}$ and $K_{2}=g_{1}^{a r_{j} \sum_{i=1}^{n} \frac{\alpha_{i} v_{i}^{(j)}}{\beta_{i}}}\left(B_{2} B_{3}\right)^{a r_{j}^{\prime} \sum_{i=1}^{n} \frac{\alpha_{i} v_{i}^{(j)}}{\beta_{i}}} g_{3}^{z_{j}}$.

For $j>k, B$ generates normal keys by choosing random exponents r_{j}, w_{j} and $t_{j i} \in Z_{N}$ for $i \in[1, n]$ and setting $K_{1 i}=g_{1} \frac{\text { ur }_{j} v_{i}^{(j)}}{\beta_{i}}\left(g_{3}\right)^{t_{j i}}, K_{2}=g_{1}^{a r_{j} \sum_{i=1}^{n} \frac{\alpha_{i} v_{i}^{(j)}}{\beta_{i}}}\left(g_{3}\right)^{w_{j}}$.

To create the k-th requested key, choosing $n+1$ random exponents $w_{k 1}, w_{k 2}, \ldots, w_{k n+1}$, B sets $K_{1 i}=T^{\frac{u v_{i}^{(k)}}{\beta_{i}}} g_{3}^{w_{k i}}$ for each $i \in[1, n], K_{2}=T^{a \sum_{i=1}^{n} \frac{\alpha_{i} v_{i}^{(k)}}{\beta_{i}}}\left(g_{3}\right)^{w_{k n+1}}$. It can be found that $z_{k i}=\frac{u v_{i}^{(k)}}{\beta_{i}}$ and $z_{k}=a \sum_{i=1}^{n} \frac{\alpha_{i} v_{V^{(k)}}}{\beta_{i}}$.

After the key request phase, A sends B two challenge vectors, $\vec{x}^{(0)}$ and $\vec{x}^{(1)}$. B randomly chooses a $\beta \in\{0,1\}$ and generates the s-ciphertext. For the challenge vector $\vec{x}^{(\beta)}=$ $\left(x_{1}^{(\beta)}, x_{2}^{(\beta)}, \ldots, x_{n}^{(\beta)}\right), B$ generates $n+1$ random elements $C_{41}, C_{42}, \ldots, C_{4 n}, C_{4} \in G_{P 4}$ by taking g_{4} and raising it to random exponents module N and sets $C_{1 i}=\left(D_{1} D_{2}\right)^{a\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)} C_{4 i}$ for each $i \in[1, n]$ and $C_{2}=\left(D_{1} D_{2}\right)^{u} C_{4}$.

Suppose that $D_{1} D_{2}=g_{1}^{d_{1}} g_{2}^{d_{2}}$, it sets $z_{c}=d_{2} u, z_{c i}=d_{2} a\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)$. Note that $\theta_{\beta}=d_{2}$ and $\theta_{1-\beta}=0$ where $\beta \in\{0,1\}$.

Suppose that $\vec{x}^{(\beta)} \cdot \vec{v}^{(k)}=\sum_{i=1}^{n} x_{i}^{(\beta)} v_{i}^{(k)} \neq 0 \bmod N$ and $\vec{x}^{(\beta)} \cdot \vec{v}^{(k)}=\sum_{i=1}^{n} x_{i}^{(\beta)} v_{i}^{(k)}=$ $0 \bmod p_{2}$, it has $z_{c} z_{k}=\sum_{i=1}^{n} z_{c i} z_{k i} \bmod p_{2}$. It means that if $\vec{x}^{(\beta)} \cdot \vec{v}^{(k)}=0 \bmod p_{2}$, then A has made an invalid key request. This is where we use our additional modular restriction. Therefore, according to the Game Restricted , as long as $\vec{x}^{(\beta)} \cdot \vec{v}^{(k)} \neq 0 \bmod p_{2}$, we can find that $z_{k}, z_{c}, z_{k i}$ and $z_{c i}$ are correctly distributed to A for each $i \in[1, n]$.

Besides, we observe that, if B attempts to test whether k-th key is s-key by creating an s-ciphertext for a vector $\vec{x}^{(k)}$ such that $\vec{x}^{(k)} \vec{v}^{(k)}=0$ and trying to decrypt, then B can find that decryption can still work whether k-th key is special or not since $z_{c} z_{k}=\sum_{i=1}^{n} z_{c i} z_{k i}$.

Therefore, we can conclude that, if $T \in G_{p_{1} p_{3}}$, then B has properly simulated $G a m e_{k-1}$. If $T \in G_{p_{1} p_{2} p_{3}}$, then B has properly simulated $G a m e_{k}$. So, we can find that if A can distinguish the Game $_{k-1}$ from $G a m e_{k}$ with advantage ϵ, then B can use the output of A to break GSD Assumption with advantage ϵ.

Lemma 3.4. Suppose that there exists a PPT algorithm A such that

$$
A d v_{\text {Game }_{q}}^{A}-A d v_{\text {Game }_{\text {Final }}}^{A}=\epsilon
$$

Then we can build a PPT algorithm B with advantage ϵ in breaking GSD Assumption.
Proof: Given $D=\left(N=p_{1} p_{2} p_{3} p_{4}, G, G_{T}, \hat{e}, g_{2} \in G_{p_{2}}, g_{3} \in G_{p_{3}}, g_{4} \in G_{p_{4}}, W_{1} W_{4} \in\right.$ $\left.G_{p_{1} p_{4}}, E_{1} E_{2} \in G_{p_{1} p_{2}}\right)$ and T where $T \in G_{p_{2} p_{4}}$ or $T \in G_{p_{1} p_{2} p_{4}}, B$ can simulate Game ${ }_{q}$ or $G_{\text {Game }}^{\text {Final }}$ with A. B chooses random exponents $a, c, u, a_{i}, b_{i}, \alpha_{i}, \beta_{i} \in Z_{N}$ for $i \in[1, n]$, and generates $A_{1}{ }^{\beta_{i}} A_{4 i}=\left(W_{1} W_{4}\right)^{a \beta_{i}} g_{4}^{a_{i}}, A_{1}^{\alpha_{i}} B_{4 i}=\left(W_{1} W_{4}\right)^{a \alpha_{i}} g_{4}^{b_{i}}$, and $U_{1} U_{4}=\left(W_{1} W_{4}\right)^{u} g_{4}^{c}$. Then, B sends public key $\left\{N, U_{1} U_{4}, A_{1}{ }^{\beta_{i}} A_{4 i}, A_{1}{ }^{\alpha_{i}} B_{4 i}, g_{4}\right\}$ to A. Each time B is asked to provide a key for a vector $\vec{v}^{(j)}=\left(v_{1}^{(j)}, v_{2}^{(j)}, \ldots, v_{n}^{(j)}\right)$, suppose that $E_{1}=W_{1}^{e_{1}}$ where $e_{1} \in$ Z_{n}, B creates an s-key by choosing random exponents $r_{j}, z_{j 1}, z_{j 2}, \ldots, z_{j n+1} \in Z_{N}$ and setting $K_{1 i}=\left(E_{1} E_{2}\right)^{u r_{j} \frac{v_{i}^{(j)}}{\beta_{i}}} g_{3}^{z_{j i}}=U_{1}^{e_{1} r_{j} \frac{v_{i}^{(j)}}{\beta_{i}}} E_{2}^{u r_{j} \frac{v_{i}^{(j)}}{\beta_{i}}} g_{3}^{z_{j i}}$ and $K_{2}=\left(E_{1} E_{2}\right)^{a r_{j} \sum_{i=1}^{n} \frac{\alpha_{i} v_{v_{j}}^{(j)}}{\beta_{i}}} g_{3}^{z_{j n+1}}=$ $A_{1}^{e_{1} r_{j} \sum_{i=1}^{n} \frac{\alpha_{i} v_{i}^{(j)}}{\beta_{i}}} E_{2}^{a r_{j} \sum_{i=1}^{n} \frac{\alpha_{i} v_{i}^{(j)}}{\beta_{i}}} g_{3}^{z_{j n+1}}$, where $i \in[1, n]$.

At some point, A sends B two challenge vectors, $\vec{x}^{(0)}$ and $\vec{x}^{(1)}$. Randomly choosing $\beta \in$ $\{0,1\}, s, s^{\prime} \in Z_{N}$, and $R_{4 i}, R_{4} \in G_{p_{4}}$ where $i \in[0,1], B$ creates the challenge ciphertext as follows: For each $i \in[1, n], C_{1 i}=\left(E_{1} E_{2}\right)^{s a\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)} T^{s^{\prime} a\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)+s^{\prime \prime} a\left(\beta_{i} x_{i}^{(1-\beta)}+\alpha_{i}\right)} R_{4 i}$, and $C_{2}=\left(E_{1} E_{2}\right)^{s u} T^{s^{\prime} u+s^{\prime \prime} u} R_{4}$.

If $T \in G_{p_{2} p_{4}}$, suppose that $E_{1}=W_{1}^{e_{1}}, E_{2}=g_{2}^{e_{2}}$ and $T=g_{2}^{t_{2}} T_{4}$ where $e_{1}, e_{2}, t_{2} \in Z_{N}$ and $T_{4} \in G_{p_{4}}$, then the challenge ciphertext is:

$$
C_{1 i}=A_{1}^{s e_{1}\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)} g_{2}^{\left(e_{2} s a+t_{2} s^{\prime} a\right)\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)+t_{2} s^{\prime \prime} a\left(\beta_{i} x_{i}^{(1-\beta)}+\alpha_{i}\right)} R_{4 i}^{\prime}
$$

and $C_{2}=U_{1}^{s e_{1}} g_{2}^{\left(e_{2} s u+t_{2} s^{\prime} u+t_{2} s^{\prime \prime} u\right)} R_{4}^{\prime}$, where $R_{4 i}^{\prime}=T_{4}^{s^{\prime} a\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)+s^{\prime \prime} a\left(\beta_{i} x_{i}^{(1-\beta)}+\alpha_{i}\right)} R_{4 i}, R_{4}^{\prime}=$ $T_{4}^{s^{\prime} u+s^{\prime \prime} u} R_{4}$ and $i \in[1, n]$. Obviously, $\theta_{\beta}=e_{2} s+t_{2} s^{\prime}$ and $\theta_{1-\beta}=t_{2} s^{\prime \prime}$. Because e_{2}, t_{2}, s, $s^{\prime}, s^{\prime \prime}$ are chosen randomly in Z_{N}, in this case, B has properly simulated Game $_{q}$.

If $T \in G_{p_{1} p_{2} p_{4}}$, suppose that $E_{1}=W_{1}^{e_{1}}, E_{2}=g_{2}^{e_{2}}$ and $T=W_{1}^{t_{1}} g_{2}^{t_{2}} T_{4}$ where $e_{1}, e_{2}, t_{1}, t_{2} \in$ Z_{N} and $T_{4} \in G_{p_{4}}$, then the challenge ciphertext is:

$$
C_{1 i}=A_{1}^{\left(s e_{1}+t_{1} s^{\prime}\right)}\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)+t_{1} s^{\prime \prime}\left(\beta_{i} x_{i}^{(1-\beta)}+\alpha_{i}\right) g_{2}^{\left(e_{2} s a+t_{2} s^{\prime} a\right)\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)+t_{2} s^{\prime \prime} a\left(\beta_{i} x_{i}^{(1-\beta)}+\alpha_{i}\right)} R_{4 i}^{\prime}
$$

and $C_{2}=U_{1}^{\left(s e_{1}+s^{\prime} t_{1}\right)+s^{\prime \prime} t_{1}} g_{2}^{\left(e_{2} s u+t_{2} s^{\prime} u+t_{2} s^{\prime \prime} u\right)} R_{4}^{\prime}$, where $R_{4 i}^{\prime}=T_{4}^{s^{\prime} a\left(\beta_{i} x_{i}^{(\beta)}+\alpha_{i}\right)+s^{\prime \prime} a\left(\beta_{i} x_{i}^{(1-\beta)}+\alpha_{i}\right)} R_{4 i}$, $R_{4}^{\prime}=T_{4}^{s^{\prime} u+s^{\prime \prime} u} R_{4}$ and $i \in[1, n]$. Obviously, $\theta_{\beta}=e_{2} s+t_{2} s^{\prime}$ and $\theta_{1-\beta}=t_{2} s^{\prime \prime}$. Because $e_{1}, e_{2}, t_{1}, t_{2}, s, s^{\prime}, s^{\prime \prime}$ are chosen randomly in Z_{N}, in this case, B has properly simulated $G a m e_{\text {Final }}$. Obviously, in $G a m e_{\text {Final }}$, given a key for vector \vec{v} which is orthogonal to the two challenge vectors, the decryption algorithm still works. Therefore, we can find that if A can distinguish the $G a m e_{q}$ from Game ${ }_{\text {Final }}$ with advantage ϵ, then B can use the output of A to break GSD Assumption with advantage ϵ.

Theorem 3.1. If GSD Assumption holds, then our IPE scheme is secure.
Proof: If GSD Assumption holds, the real security game is indistinguishable from Game $_{\text {Final }}$ based on the previous lemmas which have been proven. In Game ${ }_{\text {Final }}$, the challenge ciphertext does not contain the value of β. Therefore, the value of β is informationtheoretically hidden from the attacker. We can say that the attacker can attain no advantage in breaking our IPE scheme.
3.3. Comparison. Let $|G|$ and $\left|G_{T}\right|$ represent the size of an element of G and G_{T}, where both G and G_{T} are the group with prime order. Let $\left|G^{\prime}\right|$ and $\left|G_{T}^{\prime}\right|$ represent the size of an element of G and G_{T}^{\prime}, where both $\left|G^{\prime}\right|$ and $\left|G_{T}^{\prime}\right|$ are the group with composite order. Note that $\left|G^{\prime}\right|=c|G|$ and $\left|G_{T}^{\prime}\right|=d\left|G_{T}\right|$, where c and d are a constant about 50 [4]. According to this description, the results of the comparison with the existing IPE scheme is shown in Table 1. Because the pk size, msk size, ciphertext size, sk size, encryption time and decryption time in an IPE scheme is linear with these sizes in searchable encryption scheme, we can say that the searchable encryption scheme based on the proposed scheme has less pk size, sk size, encryption time and decryption time.

Table 1. Comparison with the previous IPE scheme

	Previous Scheme [2]	Proposed
pk size	$O\left(n^{2}\right)\|G\|$	$O(n)\left\|G^{\prime}\right\|$
msk size	$O\left(n^{2}\right)\|G\|$	$O(n)\left\|G^{\prime}\right\|$
ciphertext size	$O(n)\|G\|+\left\|G_{T}\right\|$	$O(n)\left\|G^{\prime}\right\|+\left\|G_{T}^{\prime}\right\|$
sk size	$O(n)\|G\|$	$O(n)\left\|G^{\prime}\right\|$
Encryption time	$O\left(n^{2}\right)$	$O(n)$
Decryption time	$O\left(n^{2}\right)$	$O(n)$

4. Conclusion. In this paper, we proposed a new fully secure predicate-only IPE scheme. The comparison shows that the searchable encryption scheme based on our scheme has better space and time complexity than the one based on the previous IPE schemes $[1,2]$. The open problem is to construct a complete IPE scheme (not predicate only) which can be transformed to a more efficient searchable encryption scheme.

Acknowledgment. The authors gratefully acknowledge the NSAF of China under Grant No. 10876012.

REFERENCES

[1] J. Katz, A. Sahai and B. Waters, Predicate encryption supporting disjunctions, polynomial equations, and inner products, Advances in Cryptology - EUROCRYPT 2008, Lecture Notes in Computer Science, vol.4965, pp.146-162, 2008.
[2] T. Okamoto and K. Takashima, Adaptively attribute-hiding (hierarchical) inner product encryption, in Advances in Cryptology - EUROCRYPT 2008, Lecture Notes in Computer Science, D. Pointcheval and T. Johansson (eds.), Springer, Heidelberg, 2012.
[3] A. Lewko, Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order Setting, http://eprint.iacr.org/2011/490.pdf.
[4] D. M. Freeman, Converting pairing-based cryptosystems from composite-order groups to prime-order groups, Lecture Notes in Computer Science, vol.6110, pp.44-61, 2010.
[5] D. J. Park, K. Kim and P. J. Lee, Public key encryption with conjunctive field keyword search, in WISA 2004, Lecture Notes in Computer Science, C. H. Lim and M. Yung (eds.), Springer, 2004.
[6] A. B. Lewko and B. Waters, New techniques for dual system encryption and fully secure hibe with short ciphertexts, TCC 2010, Lecture Notes in Computer Science, Springer, vol.5978, pp.455-479, 2010.

