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Abstract. In a predicate encryption scheme, a secret key associated with a predicate
f can decrypt a ciphertext corresponding to an attribute I when f(I) = 1. The predi-
cate encryption scheme which supports inner product enables more complex evaluation
on CNF/DNF formulae. Recently, a fully secure predicate encryption scheme support-
ing inner product was presented by Okamoto et al. When converting this scheme into a
searchable encryption scheme, it should be found that the space and time complexity in
this scheme can be improved. According to this issue, we propose a new fully secure pred-
icate encryption scheme supporting inner product. Based on our scheme, a more efficient
searchable encryption scheme can be created with better space and time complexity.
Keywords: Public key system, Pairing-based cryptography, Predicate encryption, Fully
security

1. Introduction. In the predicate encryption supporting inner product (IPE) scheme,
each ciphertext associated with an attribute vector x⃗ can be decrypted by secret keys
corresponding to predicate vector v⃗ if and only if v⃗ · x⃗ = 0. The first IPE scheme has
been proposed in [1]; however, they were proven in the selective security model. Recently,
fully secure PE was proposed by Okamoto and Takashima [2]. The IPE scheme can be
easily changed to be a searchable encryption scheme [5]. When we obtain a searchable
encryption scheme by making use of an IPE scheme, the IPE scheme should be ensure
that the attribute is hiding, and the message will be neglected since the message should
be encrypted by applying standard public key encryption system, such as RSA. The
IPE scheme which hides the attribute and sets message as 1 is called predicate-only
IPE introduced in [1]. In this paper, we propose a new fully secure predicate-only IPE
scheme. Compared with the searchable encryption scheme based on the previous scheme,
the efficiency of the searchable encryption scheme based on our scheme is improved.

This paper is organized as follows. In Section 2, we give a brief introduction of bilinear
groups and state the complexity assumptions. In Section 3, we will propose our scheme
and the security proof of our scheme, and give a comparison to show the novelty of our
scheme. The conclusion is presented in Section 4.

2. Preliminaries.

2.1. Composite order bilinear groups and complexity assumptions. Composite
order bilinear groups were first used in cryptographic construction in [3]. We use groups
whose order N is a product of four (distinct) prime and a generator g which takes as input
a security parameter 1n and outputs a description I = (p1, p2, p3, p4, G,GT , ê), where p1,
p2, p3, p4 are distinct primes, G and GT are cyclic groups of order N = p1p2p3p4, and
ê : G×G→ GT is a non-degenerate bilinear map such that:

1) Bilinear: ê
(
ga, hb

)
= ê(g, h)ab, where g, h ∈ G and a, b ∈ ZN ;
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2) Non-degenerate: If g is a generator of G then ê(g, g) is a generator of GT ;
3) Computable: There is an efficient algorithm to compute ê(g, h), for any g, h ∈ G.

We further require that the group operations in G and GT , as well as the bilinear map
ê, are computable in deterministic polynomial time with respect to n. Furthermore, we
assume that the descriptions of G and GT include generators of G and GT , respectively.
For S ⊆ {1, 2, 3, 4}, we denote by G∏

i∈S pi
the subgroup of order

∏
i∈S pi. Suppose that

h1 ∈ G∏
i∈S1

pi
and h2 ∈ G∏

i∈S2
pi

, where S1, S2 ⊆ {1, 2, 3, 4}. It is easy to verify that

ê(h1, h2) = 1 if gcd
(∏

i∈S1
pi ×

∏
i∈S2

pi|N2, N
)

= N . This is called the orthogonality
property and is a crucial tool in our construction.

For proving the security of our construction, a General Subgroup Decision (GSD) com-
plexity assumption presented in [3] is given as follows:
GSD Assumption. Let S0, S1, S2, . . . , Sk be non-empty subset of {1, 2, 3, 4} such that
for each j ∈ [2, k], either Sj ∩ S0, Sj ∩ S1 are both empty or Sj ∩ S0, Sj ∩ S1 are both not
empty. Given a group generator g, we define the following distribution:

G = (N = p1p2p3p4, G, GT , ê)
R← g, T0

R← G∏
i∈S0

pi
, T1

R← G∏
i∈S1

pi
,

Z2
R← G∏

i∈S2
pi
, . . . , Zk

R← G∏
i∈Sk

pi
, D = (G, Z2, Z3, . . . , Zk).

We define the advantage of an algorithm A in breaking GSD Assumption to be:

Adv1g,A(n) = Pr[A(D,T0) = 1]− Pr[A(D, T1) = 1]. (1)

Definition 2.1. For all probabilistic polynomial-time algorithms A, if Adv1g,A(n) is a
negligible function of n, then we can say that GSD Assumption holds for generator g.

3. Proposed IPE Scheme.

3.1. Construction. Based on the IPE model introduced in [1], our IPE scheme works
as follows.
Setup. Choosing a bilinear group G of order N = p1p2p3p4 (where p1, p2, p3, p4 are
distinct primes) and αi, βi ∈ ZN , U1, A1 ∈ Gp1 and A4i, B4i, U4 and g4 ∈ Gp4 where
i ∈ [1, n], the public key (pk) is published as:

pk =
{
N, U1U4, A1

βiA4i, A1
αiB4i, g4

}
.

The master secret keys is msk = {αi, βi, U1, A1, g3} where g3 is a generator of Gp3 .
Encrypt(x⃗, pk). Choosing n + 2 random elements s, d1, d2, . . . , dn, dn+1 ∈ ZN , for a
vector x⃗ = {x1, x2, . . . , xn}, the ciphertext C = (C11, C12, . . . , C1n, C2) is created as:

C1i =
(
A1

βiA4i

)sxi × (A1
αiB4i)

s × g4
di = A1

s(βixi+αi)C4i, C2 = (U1U4)
s × g

dn+1

4 = U s
1C4.

In ciphertext C, C4i = Asxi
4i Bs

4ig4
di for each i ∈ [1, n] and C4 = g

dn+1

4 U s
4 .

KeyGen(v⃗,msk). The key generation algorithm chooses r ∈ ZN and generates random
elements R3i, R3 by using gp3 and raising it to the random exponents modulo N . For a
vector v⃗ = {v1, v2, . . . , vn}, the key skv⃗ = (K11, K12, . . . , K1n, K2) is created as:

K1i = U1
r

vi
βi R3i, K2 = A1

r
∑n

i=1
αivi
βi R3,

where i ∈ [1, n].

Decryption. The algorithm computes d = ê(C2,K2)∏n
i=1 ê(C1i,K1i)

. If x⃗ · v⃗ = 0, then d = 1.

Correctness. Let C and skv⃗ be as the above, then

d = ê(C2,K2)∏n
i=1 ê(C1i,K1i)

=
ê

(
U1

sC4,A1
r
∑n

i=1
αivi
βi R3

)
∏n

i=1 ê

(
A1

s(βixi+αi)C4i,U
r

vi
βi

1 R3i

) = 1

ê(A1,U1)rs
∑n

i=1
xivi

.

Obviously, if x⃗ · v⃗ = 0, then d = 1.
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3.2. Security. To prove the security of our IPE system, according to the dual system
encryption introduced in [6], we will introduce a special key which we call it s-key and a
special ciphertext which we call it s-ciphertext in our scheme. These will not be applied
in the real IPE system, but they will be used in the proof.
s-key: Let g2 be a generator of the subgroup Gp2 . An s-key is created as follows. A normal
key K ′

11, K
′
12, . . . , K

′
1n, K ′

2 is constructed by the keyGen algorithm. Choosing a random
element ξ ∈ ZN and setting zki = u vi

βi
for each i ∈ [1, n] and zk = a

∑n
i=1

αivi

βi
, K1i is set

to be K ′
1ig

ξzki
2 for each i ∈ [1, n] and K2 is set to be K ′

2g
ξzk
2 , where v⃗ = {v1, v2, . . . , vn}

is the vector used in constructing normal key and a, u, αi, βi are required from msk =
{A1 = ga

1 , U1 = gu
1 , αi, βi, g3}. The s-key is {K11, K12, . . . , K1n, K2}.

s-ciphertext: Let g2 be a generator of the subgroup Gp2 . An s-ciphertext is created as
follows. For a vector x⃗, a normal ciphertext C ′

0, C
′
11, C

′
12, . . . , C

′
1n, C ′

2 is constructed by the
encryption algorithm. Given two random elements s0, s1 ∈ ZN , for two distinct elements
θ0, θ1 ∈ {s0, s1, 0}, suppose that x⃗ (0) and x⃗ (1) are two challenge vectors and msk =

{A1 = ga
1 , U1 = gu

1 , αi, βi, g3}, we compute zci = θ0a
(
βix

(0)
i + αi

)
+ θ1a

(
βix

(1)
i + αi

)
for

each i ∈ [1, n] and zc = u(θ0 + θ1). Let C1i = C ′
1ig

zci
2 for each i ∈ [1, n] and C2 = C ′

2g
zc
2 .

The s-ciphertext is {C0, C11, C12, . . . , C1n, C2}.
Obviously, for a vector v⃗ which is orthogonal to the two challenge vectors, it must

have
∑n

i=1 zcizki = zczk mod N where zk1, zk2, . . . , zkn, zk are chosen from the s-key of the
vector v⃗. Then the decryption algorithm can still work.

The security proof relies on GSD Assumption. We will prove security by using a hybrid
method which uses a sequence of games. These games are described as follows.

1) GameReal. This game is the real security game which is introduced in [1].
2) GameRestricted. This game is the same as the real game except that the attacker can

not ask for keys for vector v⃗ = (v1, v2, . . . , vn) satisfying x⃗ · v⃗ =
∑n

i=1 xivi = 0 mod p2,
where x⃗ = (x1, x2, . . . , xn) is one of the challenge vectors. We will retain this stronger
restriction throughout the subsequent games.

3) Gamek. For each k ∈ [0, q], we define Gamek which is similar to GameRestricted except
that the ciphertext given to A is s-ciphertext and the first k keys are s-key. The rest
keys are normal. In Game0, all the keys given to A are normal and the ciphertext is
s-ciphertext. In Gameq, the ciphertext and all of the keys are in the special form.

4) GameFinal. This game is the same as Gameq except the s-ciphertext. Given four
random elements m0,m

′
0,m1,m

′
1 ∈ ZN , n + 1 random elements R41, R42, . . . , R4n,

R4 ∈ Gp4 and two challenge vectors x⃗ (0) and x⃗ (1), the s-ciphertext of challenge vec-

tor x⃗(β) is C1i = A
m0

(
βix

(0)
i +αi

)
+m1

(
βix

(1)
i +αi

)
1 g

m′
0a
(
βix

(0)
i +αi

)
+m′

1a
(
βix

(1)
i +αi

)
2 R4i and C2 =

Um0+m1
1 g

u(m′
0+m′

1)
2 R4 where i ∈ [1, n], β ∈ {0, 1} and a, u, αi, βi are required from

MSK = {A1 = ga
1 , U1 = gu

1 , αi, βi, g3}.
Obviously, GameFinal is a game such that the ciphertext holds no information of β. We
will show these games are indistinguishable in the following lemmas.

Lemma 3.1. Suppose that there exists a probabilistic polynomial time (PPT) algorithm
A such that AdvA

GameReal
− AdvA

GameRestricted
= ϵ. Then we can build a PPT algorithm B

with advantage ≥ ϵ
3

in breaking GSD Assumption.

Proof: Given D = (N = p1p2p3p4, G, GT , ê, g1 ∈ Gp1, g3 ∈ Gp3, g4 ∈ Gp4), B can sim-
ulate GameReal with A. With probability ϵ, A can generate vector v⃗ and x⃗ such that∑n

i=1 xivi mod N ̸= 0 and
∑n

i=1 xivi mod p2 = 0. B uses these vectors to produce a non-
trivial factor of N by computing a = gcd

(∑n
i=1 xivi, N

)
. We set b = N

a
. Notice that p2

divides a and N = ab = p1p2p3p4, we consider three cases: Case 1: p1 divides b; Case 2:
p1 cannot divide b and p4 can divide b; Case 3: a = p1p2p4 and b = p3.
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At least one of these cases must occur with probability ≥ ϵ
3
. In Case 1, given D and T

where T ∈ Gp1 or T ∈ Gp1p2 , B computes T b. If T b is the identity element of GT , then
T ∈ Gp1 . Otherwise, T ∈ Gp1p2 . Therefore, B can break the GSD Assumption.

Case 2 is the same as Case 1 except that T ∈ Gp4 or T ∈ Gp2p4 . B computes T b. If T b

is the identity element of GT , then T ∈ Gp4 . Otherwise, T ∈ Gp2p4 .
In Case 3, given D = (N = p1p2p3p4, G, GT , ê, g1 ∈ Gp1, g3 ∈ Gp3, g4 ∈ Gp4, D1D2 ∈

Gp1p2 , B2B3 ∈ Gp2p3) and T where T ∈ Gp1p3 or T ∈ Gp1p2p3 , B computes ê
(
T, (B2B3)

b
)
.

If ê
(
T, (B2B3)

b
)

is the identity element of GT , then T ∈ Gp1p3 . Otherwise, T ∈ Gp1p2p3 .�
Lemma 3.2. Suppose that there exists a PPT algorithm A such that AdvA

GameRestricted
−

AdvA
Game0

= ϵ. Then we can build a PPT algorithm B with advantage ϵ in breaking GSD
Assumption.

Proof: Given D = (N = p1p2p3p4, G, GT , ê, g1 ∈ Gp1, g3 ∈ Gp3, g4 ∈ Gp4), and T where
T ∈ Gp1 or T ∈ Gp1p2 , B can simulate Game0 or GameReal with A. To generate the public
key, B chooses random exponents a, c, u, ai, bi, αi and βi ∈ ZN for each i ∈ [1, n] and sets
A1

βiA4i = g1
aβig4

bi , A1
αiB4i = g1

aαig4
ai and U1U4 = gu

1gc
4 for each i ∈ [1, n]. Obviously,

U1 = gu
1 . B sends public key

{
N,U1U4, A1

βiA4i, A1
αiB4i, g4

}
to A. Each time A asks B to

provide a key for a vector v⃗ (j) =
(
v

(j)
1 , v

(j)
2 , . . . , v

(j)
n

)
, B chooses n + 2 random exponents

rj, cj1, cj2, . . . , cjn+1 and sets K1i = g
urj

v
(j)
i
βi

1 g
cji

3 = U
rj

v
(j)
i
βi

1 g
cji

3 , K2 = A1
rj
∑n

i=1

αiv
(j)
i

βi g
cjn+1

3 for
each i ∈ [1, n].

After that, A sends B two challenge vectors, x⃗ (0) =
(
x

(0)
1 , x

(0)
2 , . . . , x

(0)
n

)
and x⃗ (1) =(

x
(1)
1 , x

(1)
2 , . . . , x

(1)
n

)
. B randomly chooses a β ∈ {0, 1}. Given C41, C42, . . . , C4n and

C4 ∈ Gp4 randomly (Random elements of GP4 can be obtained by raising g4 to random
exponents modulo N), B generates the ciphertext as follows:

C1i = T
a
(
βix

(β)
i +αi

)
C4i and C2 = T uC4 where i ∈ [1, n].

If T ∈ Gp1p2 , suppose that T = gs
1g

s′
2 , then this is a s-ciphertext with zci = s′a

(
βix

(β)
i

+αi

)
and zc = s′u. Note that θβ = s′ and θ1−β = 0 where β ∈ {0, 1}, this is distributed

as in Game0. If T ∈ Gp1 , this is a normal ciphertext. Therefore, if A can distinguish the
GameReal from Game0 with advantage ϵ, then B can use the output of A to break GSD
Assumption with advantage ϵ. �
Lemma 3.3. Suppose that there exists a PPT algorithm A such that AdvA

Gamek−1
−

AdvA
Gamek

= ϵ. Then we can build a PPT algorithm B with advantage ϵ in breaking GSD
Assumption.

Proof: Given D = (N = p1p2p3p4, G, GT , ê, g1 ∈ Gp1, g3 ∈ Gp3, g4 ∈ Gp4, D1D2 ∈
Gp1p2 , B2B3 ∈ Gp2p3) and T where T ∈ Gp1p3 or T ∈ Gp1p2p3 , B can simulate Gamek−1

or Gamek with A. Choosing random exponents a, u, c, ai, bi, αi and βi ∈ ZN for each
i ∈ [1, n], B sets A1

βiA4i = g1
aβig4

bi , A1
αiB4i = g1

aαig4
ai and U1U4 = gu

1gc
4 for each

i ∈ [1, n], and sends public key
{
N, U1U4, A1

βiA4i, A1
αiB4i, g4

}
to A. When A requests

the j-th key for vector v⃗ (j) =
(
v

(j)
1 , v

(j)
2 , . . . , v

(j)
n

)
, B generates the normal key or the

semi-function key for vector v(j).
For j <k, B creates an s-key. Choosing random exponents rj, r′j, zj and tji∈ZN , for i ∈

[1, n], B sets K1i =g1

urjv
(j)
i

βi (B2B3)
ur′jv

(j)
i

βi g
tji

3 and K2 =g1
arj

∑n
i=1

αiv
(j)
i

βi (B2B3)
ar′j

∑n
i=1

αiv
(j)
i

βi g
zj

3 .
For j > k, B generates normal keys by choosing random exponents rj, wj and tji ∈ ZN

for i ∈ [1, n] and setting K1i = g1

urjv
(j)
i

βi (g3)
tji , K2 = g1

arj
∑n

i=1

αiv
(j)
i

βi (g3)
wj .
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To create the k-th requested key, choosing n+1 random exponents wk1, wk2, . . . , wkn+1,

B sets K1i = T
uv

(k)
i

βi gwki
3 for each i ∈ [1, n], K2 = T

a
∑n

i=1

αiv
(k)
i

βi (g3)
wkn+1 . It can be found

that zki =
uv

(k)
i

βi
and zk = a

∑n
i=1

αiv
(k)
i

βi
.

After the key request phase, A sends B two challenge vectors, x⃗ (0) and x⃗ (1). B randomly
chooses a β ∈ {0, 1} and generates the s-ciphertext. For the challenge vector x⃗ (β) =(
x

(β)
1 , x

(β)
2 , . . . , x

(β)
n

)
, B generates n + 1 random elements C41, C42, . . . , C4n, C4 ∈GP4 by

taking g4 and raising it to random exponents module N and sets C1i =(D1D2)
a(βix

(β)
i +αi)C4i

for each i ∈ [1, n] and C2 = (D1D2)
uC4.

Suppose that D1D2 = gd1
1 gd2

2 , it sets zc = d2u, zci = d2a
(
βix

(β)
i + αi

)
. Note that

θβ = d2 and θ1−β = 0 where β ∈ {0, 1}.
Suppose that x⃗ (β) · v⃗ (k) =

∑n
i=1 x

(β)
i v

(k)
i ̸= 0 mod N and x⃗ (β) · v⃗ (k) =

∑n
i=1 x

(β)
i v

(k)
i =

0 mod p2, it has zczk =
∑n

i=1 zcizki mod p2. It means that if x⃗ (β) · v⃗ (k) = 0 mod p2, then A
has made an invalid key request. This is where we use our additional modular restriction.
Therefore, according to the GameRestricted, as long as x⃗ (β) · v⃗ (k) ̸= 0 mod p2, we can find
that zk, zc, zki and zci are correctly distributed to A for each i ∈ [1, n].

Besides, we observe that, if B attempts to test whether k-th key is s-key by creating an
s-ciphertext for a vector x⃗ (k) such that x⃗ (k)v⃗ (k) = 0 and trying to decrypt, then B can find
that decryption can still work whether k-th key is special or not since zczk =

∑n
i=1 zcizki.

Therefore, we can conclude that, if T ∈ Gp1p3 , then B has properly simulated Gamek−1.
If T ∈ Gp1p2p3 , then B has properly simulated Gamek. So, we can find that if A can
distinguish the Gamek−1 from Gamek with advantage ϵ, then B can use the output of A
to break GSD Assumption with advantage ϵ. �

Lemma 3.4. Suppose that there exists a PPT algorithm A such that

AdvA
Gameq

− AdvA
GameFinal

= ϵ.

Then we can build a PPT algorithm B with advantage ϵ in breaking GSD Assumption.

Proof: Given D = (N = p1p2p3p4, G, GT , ê, g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , W1W4 ∈
Gp1p4 , E1E2 ∈ Gp1p2) and T where T ∈ Gp2p4 or T ∈ Gp1p2p4 , B can simulate Gameq or
GameFinal with A. B chooses random exponents a, c, u, ai, bi, αi, βi ∈ ZN for i ∈ [1, n],
and generates A1

βiA4i = (W1W4)
aβigai

4 , A1
αiB4i = (W1W4)

aαigbi
4 , and U1U4 = (W1W4)

ugc
4.

Then, B sends public key
{
N, U1U4, A1

βiA4i, A1
αiB4i, g4

}
to A. Each time B is asked to

provide a key for a vector v⃗ (j) =
(
v

(j)
1 , v

(j)
2 , . . . , v

(j)
n

)
, suppose that E1 = W e1

1 where e1 ∈
Zn, B creates an s-key by choosing random exponents rj, zj1, zj2, . . . , zjn+1 ∈ ZN and set-

ting K1i = (E1E2)
urj

v
(j)
i
βi g

zji

3 = U
e1rj

v
(j)
i
βi

1 E
urj

v
(j)
i
βi

2 g
zji

3 and K2 = (E1E2)
arj

∑n
i=1

αiv
(j)
i

βi g
zjn+1

3 =

A
e1rj

∑n
i=1

αiv
(j)
i

βi
1 E

arj
∑n

i=1

αiv
(j)
i

βi
2 g

zjn+1

3 , where i ∈ [1, n].
At some point, A sends B two challenge vectors, x⃗ (0) and x⃗ (1). Randomly choosing β ∈

{0, 1}, s, s′ ∈ ZN , and R4i, R4 ∈ Gp4 where i ∈ [0, 1], B creates the challenge ciphertext

as follows: For each i ∈ [1, n], C1i = (E1E2)
sa
(
βix

(β)
i +αi

)
T

s′a
(
βix

(β)
i +αi

)
+s′′a

(
βix

(1−β)
i +αi

)
R4i,

and C2 = (E1E2)
suT s′u+s′′uR4.

If T ∈ Gp2p4 , suppose that E1 = W e1
1 , E2 = ge2

2 and T = gt2
2 T4 where e1, e2, t2 ∈ ZN

and T4 ∈ Gp4 , then the challenge ciphertext is:

C1i = A
se1

(
βix

(β)
i +αi

)
1 g

(e2sa+t2s′a)
(
βix

(β)
i +αi

)
+t2s′′a

(
βix

(1−β)
i +αi

)
2 R′

4i
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and C2 = U se1
1 g

(e2su+t2s′u+t2s′′u)
2 R′

4, where R′
4i = T

s′a
(
βix

(β)
i +αi

)
+s′′a

(
βix

(1−β)
i +αi

)
4 R4i, R′

4 =

T s′u+s′′u
4 R4 and i ∈ [1, n]. Obviously, θβ = e2s + t2s

′ and θ1−β = t2s
′′. Because e2, t2, s,

s′, s′′ are chosen randomly in ZN , in this case, B has properly simulated Gameq.
If T ∈ Gp1p2p4 , suppose that E1 = W e1

1 , E2 = ge2
2 and T = W t1

1 gt2
2 T4 where e1, e2, t1, t2 ∈

ZN and T4 ∈ Gp4 , then the challenge ciphertext is:

C1i = A
(se1+t1s′)

(
βix

(β)
i +αi

)
+t1s′′

(
βix

(1−β)
i +αi

)
1 g

(e2sa+t2s′a)
(
βix

(β)
i +αi

)
+t2s′′a

(
βix

(1−β)
i +αi

)
2 R′

4i

and C2 = U
(se1+s′t1)+s′′t1
1 g

(e2su+t2s′u+t2s′′u)
2 R′

4, where R′
4i =T

s′a
(
βix

(β)
i +αi

)
+s′′a

(
βix

(1−β)
i +αi

)
4 R4i,

R′
4 = T s′u+s′′u

4 R4 and i ∈ [1, n]. Obviously, θβ = e2s + t2s
′ and θ1−β = t2s

′′. Because
e1, e2, t1, t2, s, s′, s′′ are chosen randomly in ZN , in this case, B has properly simulated
GameFinal. Obviously, in GameFinal, given a key for vector v⃗ which is orthogonal to the
two challenge vectors, the decryption algorithm still works. Therefore, we can find that
if A can distinguish the Gameq from GameFinal with advantage ϵ, then B can use the
output of A to break GSD Assumption with advantage ϵ. �
Theorem 3.1. If GSD Assumption holds, then our IPE scheme is secure.

Proof: If GSD Assumption holds, the real security game is indistinguishable from
GameFinal based on the previous lemmas which have been proven. In GameFinal, the chal-
lenge ciphertext does not contain the value of β. Therefore, the value of β is information-
theoretically hidden from the attacker. We can say that the attacker can attain no ad-
vantage in breaking our IPE scheme. �
3.3. Comparison. Let |G| and |GT | represent the size of an element of G and GT , where
both G and GT are the group with prime order. Let |G′| and |G′

T | represent the size of
an element of G and G′

T , where both |G′| and |G′
T | are the group with composite order.

Note that |G′| = c|G| and |G′
T | = d|GT |, where c and d are a constant about 50 [4].

According to this description, the results of the comparison with the existing IPE scheme
is shown in Table 1. Because the pk size, msk size, ciphertext size, sk size, encryption time
and decryption time in an IPE scheme is linear with these sizes in searchable encryption
scheme, we can say that the searchable encryption scheme based on the proposed scheme
has less pk size, sk size, encryption time and decryption time.

Table 1. Comparison with the previous IPE scheme

Previous Scheme [2] Proposed

pk size O(n2)|G| O(n)|G′|
msk size O(n2)|G| O(n)|G′|

ciphertext size O(n)|G|+ |GT | O(n)|G′|+ |G′
T |

sk size O(n)|G| O(n)|G′|
Encryption time O(n2) O(n)

Decryption time O(n2) O(n)

4. Conclusion. In this paper, we proposed a new fully secure predicate-only IPE sche-
me. The comparison shows that the searchable encryption scheme based on our scheme
has better space and time complexity than the one based on the previous IPE schemes
[1, 2]. The open problem is to construct a complete IPE scheme (not predicate only)
which can be transformed to a more efficient searchable encryption scheme.
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