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Abstract. Fault detection technique is considerably significant to timely prevent eco-
nomic loss on industrial dynamic systems. We propose a novel robust stochastic fault de-
tection approach for photovoltaic (PV) power generators using Bayesian networks (BN)
theory as well as the general likelihood ratio test (GLRT) approach. We statistically
represent a BN model against PV power systems in terms of a relationship from its in-
put and output variables. Conditional probability distribution for statistical variables in
a constructed BN model is defined as the Weibull function and we derive a parameter
estimation rule for a BN model based on the maximum likelihood (ML) theory. Next,
we propose a decision making scheme in realizing our fault detection mechanism with
the GLRT method against PV power generator systems. We demonstrate reliability and
practicability of the proposed fault detection methodology through real-time experiments
with a test-bed of PV power systems.
Keywords: PV generator, Fault detection, Bayesian network, GLRT, Maximum likeli-
hood

1. Introduction. Photovoltaic (PV) power generators have been widely employed over
the world because it is significantly regarded as the best alternative energy system. Until
now, there are many research issues for developing PV generator systems in the fields of
engineering and scientific applications [1,2].

Mellit and Kalogirou developed dynamic model of PV battery systems by using neural-
fuzzy inference techniques in terms of its voltage and current characteristic analysis with
respect to solar irradiation, temperature, and humidity [3]. Chin et al. proposed a novel
maximum power point tracking (MPPT) method for stand-alone PV systems through
numerical modeling of it with a well-known Matlab c⃝ software [4]. Duan et al. developed
wireless communication based monitoring systems to supervise quality of power from dis-
tribution typed PV generators via global positioning systems (GPS) equipment [5]. Singh
et al. addressed an integrated monitoring technique for PV power systems through In-
ternet communications [6] and Tina and Grasso developed Web based monitoring and
control methodologies for stand-alone PV power systems and applied particularly in com-
puting effectiveness of energy [7]. More recently, advanced remote monitoring systems for
distributed PV power systems have been addressed for hierarchical managements mainly
including clients of PV systems, users, and operating terminals in the proposed software
framework [8].

Nowadays, PV systems obviously incline to be employed in small-scaled appliances
or specific embedded systems since considerably effective solar cells have been widely
addressed. For such particular purpose, an electric performance of them should be ac-
cordingly enhanced. Much attention for realizing advanced PV system techniques requires
developing of fault detection approach to timely find abnormality of it out due to unex-
pected fault.
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We propose a novel fault detection method for PV power systems by using stochastic
modeling and general likelihood ratio test (GLRT) theory. It is well known that the GLRT
based detection scheme is useful for stochastic dynamic systems in which probability dis-
tribution estimation is employed to define the likelihood function in classifying specific
signals sequentially [9]. Firstly, we statistically represent a Bayesian networks (BN) model
from an input-output relationship of PV power systems. Conditional probability distri-
bution given as its BN parameters is mathematically defined as the Weibull probability
function in which non-negative input variables from PV systems are involved obviously.
Secondly, we derive a parameter learning algorithm for a constructed BN model to seek
its optimal parameter vectors via a maximum likelihood (ML) strategy. Next, a fault
detection algorithm is proposed in which two Weibull probability distributions against
normal and abnormal PV system variables are mathematically represented to derive a
decision making algorithm. We test reliability and practicability of the proposed fault
detection algorithm through real-time experiment for PV power generator systems.

This paper is organized as follows. We present a mathematical representation for PV
modules in Section 2. A BN model for dynamics of PV generators and its parameter
estimation are derived in Section 3. We propose our fault detection algorithm for PV
power systems in Section 4 and describe real-time experiments and its results to test its
reliability in Section 5. Lastly, conclusions and future work are respectively provided in
Section 6.

2. Mathematical Model of PV Generators. Basically, PV generators include mul-
tiple solar modules which are electrically connected in series and parallel. We illustrate
an electric circuit model for a PV module in Figure 1 and mathematically express the
output current Ipv [2] as

Ipv = Iph − Io

[
exp

q (Vpv + IpvRs)

dδT
− 1

]
−
(

Vpv + IpvRs

Rp

)
(1)

where Vpv[V] is the output voltage, d is the diode factor, Io[A] is the saturation current of
the diode, Iph[A] is the photocurrent of the solar cells, Rs[Ω] is the series resistance, Rp[Ω]
is the bypass resistance, δ[J/K] is the Boltzmann constant, q[C] is the elementary charge,
and T [K] is ambient temperature of a solar cell. A photocurrent Iph is analytically defined
as a function of solar irradiance G[W/m2] and temperature T [K] is mathematically given
by

Iph = Iph−stc
G

Gstc

[1 + a0(T − Tstc)] (2)

where Iph−stc[A] is the short-circuit current measured at reference conditions, coefficients
Tstc[K] and Gstc[W/m2] are solar irradiance and ambient temperature respectively at

Figure 1. An electric circuit model of PV cells
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reference conditions, and a0 is a short-circuit temperature coefficient. The saturation
current I0 in (1) is expressed as a nonlinear function of temperature given by

I0 = C0T
3 exp

(
−Egap

δT

)
(3)

where C0

[
AK−3

]
is a temperature coefficient from PV parameter fitting and Egap[eV] is a

band gap. We recognize from the electric dynamic model of the PV power generators that
solar radiation and ambient temperature directly influence its electric power quantity.
Moreover, the two variables are obviously stochastic and correspondingly the electric
power is regarded as a random variable.

Figure 2. The Bayesian network model

3. Bayesian Networks Model for PV Dynamics. The BN model is a graphical
representation for stochastic casual systems based on probability and statistics theory
[10]. For constructing generic BN models, nodes and arrows are employed to graphically
indicate random variables against stochastic dynamic systems and their dependencies to
express causality with conditional probability. We depict a specific BN model in Figure
2 to describe such dynamic relationship for PV power system. Here, random variables
G, T , and Y stand for respectively solar radiation, ambient temperature, and output
power from PV system. In Figure 2, from the statistic point of view, a constructed BN
model includes two conditional probabilities P (Y |G) and P (Y |T ), and consequentially
leads the joint conditional probability P (Y |G, T ). Because of non-negative continuous
random variable Y , it is reasonable that the conditional probability P (Y |G, T ) involves
the Weibull distribution expressed mathematically as [11]

fY (Y |G, T ) =

{
αyβ−1 exp

(
−αyβ

β

)
, if y > 0

0, otherwise
(4)

where parameters α and β are given to determine shape of the distribution. These two
parameters are optimally estimated with data sequences obtained from established PV
power systems through parameter learning algorithm. Next, we present the maximum
likelihood (ML) scheme based parameter estimation procedure for the BN model. First,
we define a likelihood function by applying the logarithms to N observations of a sampled
output value y(n) measured from a given PV system as

L =
N∑

n=1

ln (fY (y(n)|G, T, α, β)) = N ln(α) + (β − 1)
N∑

n=1

ln(y(n)) − α

β

N∑
n=1

yβ(n) (5)

Based on a well-known ML estimation theory, we obtain two estimating equations in
terms of α and β from the likelihood function in (5) by equaling to zero as

∂ ln L

∂α
=

N

α
− 1

β

N∑
n=1

yβ(n) = 0 (6)
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∂ ln N

∂β
=

N∑
n=1

ln(y(n)) +
α

β2

N∑
n=1

yβ(n) − α

β

N∑
n=1

yβ(n) ln(y(n)) = 0 (7)

Solving these two equations with respect to the parameters α and β yields its estimation
rules in which both are mutually correlated and become a function of the output y(n).
However, it is rarely straightforward to solve directly these equations in (6) and (7) from
analytical calculation methods. Alternatively, we need to seek its solutions through a
numerical optimization approach such as a gradient descent algorithm for our estimation
task. In order for applying this optimization method, we first define an objective function
including the two estimating equations in (6) and (7) as

J = min
α,β

1

2

(
J2

1 + J2
2

)
(8)

where

J1 =
N

α
− 1

β

N∑
n=1

yβ(n) (9)

J2 =
N∑

n=1

ln(y(n)) +
α

β2

N∑
n=1

yβ(n) − α

β

N∑
n=1

yβ(n) ln(y(n)) (10)

We apply a gradient descent based optimization method to derive adjustment rules of the
two parameters α and β as

α(k + 1) = α(k) − η
∂(J1 + J2)

∂α
(11)

β(k + 1) = β(k) − η
∂(J1 + J2)

∂β
(12)

where η ∈ (0, 1) is a learning parameter. We calculate the partial differential terms in
(11) and (12) as

∂J1

∂α
= −N

α2
(13)

∂J2

∂α
=

∂J1

∂β
=

1

β2

N∑
n=1

yβ(n) − 1

β

N∑
n=1

yβ(n) ln(y(n)) (14)

∂J2

∂β
= − α

β3

N∑
n=1

yβ(n) + 2
α

β2

N∑
n=1

yβ(n) ln(y(n)) − α

β

N∑
n=1

yβ(n)(ln(y(n)))2 (15)

These results are simply substituted to (11) and (12) and we finally obtain adjustment
rules of the two parameters as

α(k + 1) = α(k) − η

{(
−N

α
+

1

β

N∑
n=1

yβ(n)

)
N

α2
+

(
N∑

n=1

ln(y(n)) +
α

β2

N∑
n=1

yβ(n)

− α

β

N∑
n=1

yβ(n) ln(y(n))

)(
1

β2

N∑
n=1

yβ(n) − 1

β

N∑
n=1

yβ(n) ln(y(n))

)} (16)
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β(k + 1) = β(k) − η

{(
N

α
− 1

β

N∑
n=1

yβ(n)

)(
1

β2

N∑
n=1

yβ(n)

− 1

β

N∑
n=1

yβ(n) ln(y(n))

)
+

(
N∑

n=1

ln(y(n)) +
α

β2

N∑
n=1

yβ(n)

− α

β

N∑
n=1

yβ(n) ln(y(n))

)(
− α

β3

N∑
n=1

yβ(n) + 2
α

β2

N∑
n=1

yβ(n) ln(y(n))

− α

β

N∑
n=1

yβ(n)(ln(y(n)))2

)}
(17)

These two estimation rules appear somewhat complicated for computational procedure,
but simple mathematical operations are applied recursively to update the parameters. As
well, this computational configuration leads easy real-time implementation in terms of cal-
culation burden. This estimation is iteratively carried out until a satisfactory performance
reaches through a suitable parameter testing.

4. Fault Detection Algorithm. We propose our fault detection algorithm by using a
GLRT methodology in which two hypotheses are predefined to determine whether fault
occurs or not in the PV systems. We begin with a definition of the binary hypothesis [12]
as {

H0 : y(t) = y0(t); No fault
H1 : y(t) = y0(t) + ỹ(t); Fault

(18)

where the hypothesis H0 involves normality of PV systems, but for the hypothesis H1

we consider that PV system abnormally works with fault. In (18), a nominal output
variable y0(t) is given as a random variable with the Weibull probability distribution
and an auxiliary variable ỹ(t) stands for a deterministic perturbation feasibly occurring
in abnormal PV systems. Namely, the hypotheses in (18) indicate that under H0 the
output variable y(t) in PV power systems involves the Weibull distribution with nominal
parameters α0 and β0. While the Weibull distribution for the output y(t) under H1 is
configured with parameters α1 and β1. The former is determined from normal PV systems
and the latter is continuously estimated in actual real-time implementation. We utilize the
proposed estimation algorithm in (16) and (17) for this task in constructing the decision
making mechanism in (18). Next, a GLRT method is applied to the decision making
rules in (18) for devising our fault detection algorithm. We observe N independently
and identically distributed (IID) samples y(n) = y0(n), n = 0, . . . , N − 1 under H0

and y(n) = y0(n) + ỹ(n) under H1 from the Weibull distribution. Thus, under H0 the
probability distribution function is expressed as

fY (Y |G, T ; H0) =
N−1∏
n=0

(
α0y

β0−1(n) exp

(
−α0y

β0(n)

β0

))
(19)

and under H1 we similarly have

fY (Y |G, T ; H1) =
N−1∏
n=0

(
α̂1 (y(n) − ỹ(n))β̂1−1 exp

(
− α̂1 (y(n) − ỹ(n))β̂1

β̂1

))
(20)

where α̂1 and β̂1 are estimates of parameters α1 and β1. We apply the GLRT scheme to
constructing a decision making in our fault detection algorithm from the hypothesis in
(18). Based on the GLRT, we select H1 if

L(Y ) =
fY (Y |G, T ; α̂1, β̂1, H1)

fY (Y |G, T ; α0, β0, H0)
> γ (21)
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where γ is a predefined threshold which is properly chosen from iterative real-time exper-
iments. Otherwise, in case of satisfying L(Y ) ≤ γ, the hypothesis H0 is chosen. Applying
the logarithm to (21) we have

ln L(Y ) = ln
(
fY (Y |G, T ; α̂1, β̂1, H1)

)
− ln (fY (Y |G, T ; α0, β0, H0)) > γ′ (22)

where γ′ = ln γ. We substitute (19) and (20) to the right term of (22) respectively and
expand as

ln (fY (Y |G, T ; α0, β0, H0)) = ln

(
N−1∏
n=0

(
α0y

β0−1(n) exp

(
−α0y

β0(n)

β0

)))

= N ln α0 + (β0 − 1)
N−1∑
n=0

ln y(n) − α0

β0

N−1∑
n=0

yβ0(n)

(23)

and

ln
(
fY (Y |G, T ; α̂1, β̂1, H1)

)
= ln

(
N−1∏
n=0

(
α̂1 (y(n) − ỹ(n))β̂1−1 exp

(
− α̂1(y(n) − ỹ(n))β̂1

β̂1

)))

= N ln α̂1 +
(
β̂1 − 1

)N−1∑
n=0

ln(y(n) − ỹ(n)) − α̂1

β̂1

N−1∑
n=0

(y(n) − ỹ(n))β̂1

(24)

These results in (23) and (24) finally lead a likelihood function in (22) as

L̃(Y ) = N (ln α0 − ln α̂1) +
(
β̂1 − 1

)N−1∑
n=0

ln (y(n) − ỹ(n)) − (β0 − 1)
N−1∑
n=0

ln y(n)

− α̂1

β̂1

N−1∑
n=0

(y(n) − ỹ(n))β̂1 +
α0

β0

N−1∑
n=0

yβ0(n) > γ′

(25)

To compute a likelihood function in (25), a series of observation data of the output y(n),
n = 0, . . . , N − 1 and estimate of the parameters αi and βi, i = 0, 1 in the Weibull
probability density function are required to establish our fault detection algorithm. We
first estimate these two Weibull parameters based on the adjustment rules in (16) and
(17), and then compute a likelihood value in (25) including sequential observation of the
output power y(n) from PV power systems. This computational procedure for our fault
detection algorithm is illustrated in Figure 3.

Figure 3. Computational procedure for the proposed fault detection approach

5. Real-Time Experiments. We accomplish real-time experiments for demonstrating
reliability of the proposed fault detection approach using a test-bed of PV generator sys-
tems. We construct a PV power generator composed of six PV modules with individually
same electric specification as follows: Maximum output power 20.0[W], maximum voltage
19.5[V], maximum current 1.3[A], open-circuit voltage 23.5[V], and short-circuit current
1.34[A]. We acquire output voltages of the PV generator under different irradiation and
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ambient temperature with the halogen lamps as lighting sources. Figure 4 illustrates indi-
vidual voltages against different irradiations from 150[W/m2] to 950[W/m2] under three
different ambient temperature conditions of 15[◦C], 25[◦C] and 35[◦C]. We utilize these
measured voltages in Figure 4 to construct the Weibull distribution function through the
proposed estimation method in Section 3. For testing the proposed fault detection algo-
rithm, we measure the output voltage from PV generator during 500[sec] and apply an
electric fault to it around 250[sec]. Figure 5 shows time-histories of the output voltage
of PV system with fault. Here, we observe that the output voltage abruptly declines to
about 17.5[V] around 250[sec] due to fault. Finally we calculate the likelihood expressed
in Section 4 against the output voltage in Figure 5 and illustrate time-histories of the
normalized values for same time period in Figure 6. We recognize from Figure 6 that the
likelihood is similarly reduced to averagely 0.25 around 260[sec]. Moreover, it is obvious
that a shape of the curve in Figure 6 is similar to that of the output voltage in Figure 5.
Here, there is an abrupt change in the likelihood around 260[sec] since the fault occurs in
the PV system. This result indicates that it takes about 10 seconds to detect the abnor-
mal behavior of the PV system after an occurrence of the fault. Therefore, we assure that
our proposed fault detection works effectively to timely abnormality of the PV system
and its performance is very reliable in the real-time implementations.

Figure 4. Voltages under different radiations and temperatures

Figure 5. Time-histories of the output voltage under fault
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Figure 6. Time-histories of the normalized likelihood values

6. Conclusions. This paper presents a novel fault detection approach for PV power
generator systems to timely recognize abnormality of it for minimizing electrical damages.
We employ the Bayesian network theory to represent stochastic dynamics of PV systems
and the GLRT approach to establish decision making in our fault detection framework. We
conduct real-time experiment to test the proposed fault detection methodology through
a test-bed of PV systems. We demonstrate from this task that it effectively works in
that fault is timely detected by checking the likelihood value. Future work will include
practical applications in which we apply the proposed fault detection technique to PV
power systems established in industrial fields.
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