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Abstract. Multi-objective evolutionary algorithm based on decomposition (MOEA/D)
decomposes a multi-objective optimization problem (MOP) into a series of subproblems
and solves them simultaneously in a single run. Recent studies have shown that by allo-
cating different computational resources to each subproblem based on their difficulty, the
performance of MOEA/D could be significantly enhanced. However, how to define the
difficulty of a subproblem is rather hard. In this paper, a new dynamic resource allocation
mechanism based on the access frequency of each subproblem is proposed. It assigns more
computational resources for those subproblems that are less visited. The basic idea is that
less accessed subproblems are not fully explored and thus need more efforts. Experimental
results show that the strategy proposed is very competitive.
Keywords: Multi-objective optimization, Decomposition, Dynamic resource allocation,
Access frequency

1. Introduction. Without loss of generality, a multi-objective optimization problem
(MOP) could be stated as:

min F(x) = (f1(x), . . ., fm(x))
T

s.t. x ∈ Ω = [lk, uk]
n (1)

where x = (x1, . . . , xn)
T is an n dimensional decision vector lying in the decision space

Rn. lk, uk are the lower and upper bounds of xk (k = 1, . . ., n), respectively. F : Ω →
Rm consists of m objective functions (f1, . . ., fm) to be minimized and Rm is called the
objective space.

In solving a MOP, the improvement of one objective often leads to the deterioration
of another. Thus multi-objective optimization algorithms aim to find the best trade-offs
among the objectives. The best trade-offs among different objectives can be defined using
the concept of Pareto optimality. In a minimization problem, a domination relationship
between two solutions could be defined as follows: let x,y ∈ Ω, x is said to dominate
y, denoted by F(x) ≺ F(y), if and only if fi(x) ≤ fi(y) for every i ∈ {1, . . . ,m} and
fj(x) < fj(y) for at least one j ∈ {1, . . . ,m}. A solution x∗ is called a Pareto optimal
solution if there is no other solution s ∈ Ω such that s dominates x∗. The set of all the
Pareto solutions in Ω is called the Pareto set (PS) and its image in the objective space is
called the Pareto front (PF) [1].

Multi-objective evolutionary algorithm based on decomposition (MOEA/D) [2] has
been proved efficient in solving MOPs. It decomposes a MOP into a series of subprob-
lems and solves them simultaneously in a single run. However, the performance (search
balance between exploitation and exploration) of MOEA/D is closely related to several

2059



2060 W. NING, B. GUO, Y. YAN AND J. WU

components such as Tm, Tr, nr, and the decomposition method. Tuning these compo-
nents adaptively based on the feedback of evolution thus becomes a prospective research
direction. A lot of MOEA/D variants that tune these components adaptively have been
proposed recently [3-6]. Among these techniques, dynamic resource allocation mechanis-
m adaptively assigns different computational efforts for each subproblem based on their
difficulty. In [7], each subproblem is assigned a utility π and the subproblems with higher
utility will have higher probability to get more computational resources. Continuing this
work, Zhou and Zhang [8] proposed a probability of improvement (PoI) vector that is
maintained at each iteration and used to select the subproblems to invest.
The definition of subproblem difficulty, as noted in [8], is rather hard. In this pa-

per, a new dynamic resource allocation mechanism based on the access frequency of each
subproblem is proposed, which tries to put more efforts into the less explored regions.
A probability vector is also adopted in the proposed algorithm to assign different sub-
problems into different computational resources. The probability vector adopted in the
proposed algorithm is used in a similar way to Zhou and Zhang’s algorithm [8], but the
elements of our probability vector are calculated based on the access frequency of each
subproblem. Though a hybrid utility function considering the density in the objective
space is also suggested in [8], we actually propose a more simple measure from a different
view to quantify the difficulty of each subproblem, which contributes to the main novelty
of our method.
The rest of the paper is organized as follows. Section 2 details the proposed algorithm.

Section 3 presents some experimental results. Section 4 concludes this paper.

2. Proposed Algorithm. The proposed algorithm adopts similar framework to MOEA
/D [2], and thus a set of evenly spread weight vectors W = {w1, . . . ,wN} is needed
to decompose (1) into N subproblems. In this paper, the Tchebycheff approach that is
most widely used in MOEA/D study is adopted (other decomposition methods such as
boundary intersection approach [2] could also be adopted) as the decomposition method
and the ith subproblem could be defined as:

min gte
(
x|wi, z∗

)
= max

1≤j≤m

{
wi

j

∣∣fj(x)− z∗j
∣∣}

s.t. x ∈ Ω
(2)

where z∗ = (z∗1 , . . . , z
∗
m) is the ideal reference point, i.e., z∗j = min {fj(x)|x ∈ Ω} for each

j = 1, . . . ,m. wi = {wi
1, . . . , w

i
m} (i = 1, . . . , N) is the ith weight vector in W and∑m

j=1w
i
j = 1. All solutions of these N subproblems constitute a good approximation to

the PF of (1).
Similar to [8], the proposed algorithm also uses a probability vector p = {p1, . . . , pN}

to assign the computational resources for each subproblem. Initially, T (neighbor size)
closest (based on the Euclidean distance between the corresponding weight vectors of
each subproblem) neighbors of the ith (i = 1, . . . , N) subproblem are indexed by B(i) ⊂
{1, . . . , N} where |B(i)| = T . Each element of p is initialized as 1. Each element of acc
(the number of solutions accessed by each subproblem at each iteration) is initialized as
0. At each iteration, the algorithm maintains:

• A population
{
x1, . . . ,xN

}
of size N ;

• The investment probability vector p;
• acc: the number of solutions accessed by each subproblem at each iteration;
• The ideal reference point z∗ estimated by all encountered solutions so far.

Algorithm 1 presents the general framework of the proposed algorithm. In line 7, the
ith subproblem is invested with a probability of pi, where rand() ∈ [0, 1] is a random
number generator. In line 9, two parents are selected from the mating pool P and a new
solution y is generated using DE and mutation operator, as is done in [7]. In line 11,
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the best suitable subproblem with index bestId for the newly generated solution y is first
selected using:

bestId = argi=1,...,N min
{
gte
(
y|wi, z∗

)}
(3)

as is done in [4]. Then y is used to update T neighbor solutions of subproblem bestId.
That is, if gte

(
y|wk, z∗

)
< gte

(
xk|wk, z∗

)
(k ∈ B(bestId)), set xk = y. Note that

maximum nr solution is replaced during this process.
In line 14, each element of the probability vector is updated at iteration t as follows:

ci =
∑t

h=t−∆T
acc[h][i] (4)

ui = 1− ci
maxj=1,...,N cj

(5)

pi = ui (6)

where acc[h][i] denotes the number of solutions accessed by the ith (i = 1, . . . , N) sub-
problem at iteration h. Higher pi means that the ith subproblem is less accessed and is
given more efforts in line 7 of Algorithm 1.

We denote the proposed algorithm above as MOEA/D-AF (MOEA/D based on the
access frequency of each subproblem). Besides, the proposed strategy is combined with the
strategy adopted in [8], which allocates the resources based on the relative improvement of
each subproblem. We denote the hybrid algorithm as MOEA/D-AF+RI (MOEA/D based
on the access frequency and relative improvement of each subproblem). Each element of
the investment probability vector pAF+RI adopted in MOEA/D-AF+RI is calculated as
follows:

uAF+RI
i = ui + uRI

i (7)

pAF+RI
i =

uAF+RI
i + ϵ

maxj=1,...,Nu
AF+RI
j + ϵ

(8)

where uRI
i is the utility function of the ith subproblem based on Equation (5) in [8] and

ϵ = 1.0× 10−50 is a small value.

Algorithm 1: General framework of the proposed algorithm

Input: a stopping criteria; W ; T ; δ; ∆T ;
1 Initialize B(i) for each subproblem;
2 Sample N solutions randomly from the search space to form the initial population;
3 Initialize z∗;
4 p = (1, . . . , 1); Each element of acc is initialized as 0; t = 0;
5 while the stopping criteria are not satisfied do
6 foreach i ∈ {1, . . . , N} do
7 if rand() < pi then

8 P =

{
B(i), if rand() ≤ δ
{1, . . . , N}, otherwise

9 Randomly select two parent indexes from P and generate a new solution
y using DE and mutation operator;

10 Update z∗: if fj(y) < z∗j , then set z∗j = fj(y) (j = 1, . . . ,m);

11 Select the most suitable subproblem with index bestId for y and update
the solutions that are the T closest neighbors of the bestIdth subproblem,
acc[t][bestId] + +;

12 t++;
13 if t%∆T == 0 then
14 Update p;
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3. Experimental Results. The performance of MOEA/D-AF is tested on ten MOPs
of CEC’09 test suite [9] and MOEA/D-AF is compared with MOEA/D-DRA (MOEA/D
with dynamic resource allocation) [7] and MOEA/D-AF+RI 1. Twenty independent runs
are performed on each test instance for each algorithm. Maximum 300,000 function evalu-
ations are used for each test instance. For all the three algorithms, the population size N
is 600 for UF1-UF7 (two objectives) and 1000 for UF8-UF10 (three objectives); T = 0.1N
and nr = 0.01N ; δ = 0.9. The DE operator with CR = 1.0, F = 0.5 and the mutation
operator with η = 20, pm = 1/n are adopted. The parameters settings above are the same
with those adopted in [7]. As a matter of fact, these parameters are set to some typical
values which are adopted in most MOEA/D studies. For fair comparison, the utility of
each subproblem is updated every 30 iterations for MOEA/D-DRA. For MOEA/D-AF
and MOEA/D-AF+RI, ∆T = 30.
Two indicators (hypervolume Ihv [11] and inverted generational distance IIGD [12]) that

quantify both the convergence and spread of the Pareto front approximation are adopted.
Let r∗ be a reference point which denotes an upper bound over all the objectives. And

it is defined as the biggest objective value of the real Pareto front. Let A be the Pareto
front approximation, and Ihv could be calculated as:

Ihv(A) = Λ

( ∪
a∈A

{x|a ≺ x ≺ r∗}

)
(9)

where Λ is the Lebesgue measure. Higher Ihv indicates better convergence and spread
performance of the Pareto front approximation.
Let A be the Pareto front approximation, R be the real Pareto front. IIGD is calculated

as follows:

IIGD(R,A) =

∑
r∈R

d(r, A)

|R|
(10)

where d(r, A) is the minimum Euclidean distance between r and the points in A. Lower
IIGD indicates better convergence and spread performance of the Pareto front approxi-
mation.
The box plots of Ihv and IIGD based on twenty runs obtained by the three algorithms

in solving UF1-UF10 are presented in Figure 1 and Figure 2, respectively. It could be
observed from these two figures that MOEA/D-AF and MOEA/D-AF+RI have simi-
lar performances and they generally perform better than MOEA/D-DRA in UF1, UF3,
UF4 and UF6. MOEA/D-DRA performs significantly better than MOEA/D-AF and
MOEA/D-AF+RI only in UF8 and MOEA/D-DRA has better performance in UF2 with
respect to the medias of Ihv and IIGD. For UF5 and UF9, MOEA/D-AF+RI performs the
best. For UF7, MOEA/D-AF performs the best with respect to Ihv and MOEA/D-DRA
performs the best with respect to IIGD. For UF10, MOEA/D-AF performs the best.

4. Conclusions. A new dynamic resource allocation strategy in MOEA/D that is based
on the access frequency of each subproblem is proposed in this paper. More computational
resources are allocated for those subproblems that are less visited. Besides, the strategy
proposed is combined with a recently proposed dynamic resource allocation strategy that
is based on the relative improvement of each subproblem. Experimental results suggest
that the proposed resource allocation strategy is very competitive. When combined with
the strategy that is based on the relative improvement of each subproblem, the strategy
proposed in this paper could perform even better in some test instances. In the future,
other measures that could be used to quantify the difficulty of a subproblem are also
preferred and the adaptability of each measure needs further investigation.

1The jMetal framework [10] is used to implement MOEA/D-DRA. MOEA/D-AF and MOEA/D-
AF+RI are implemented by the authors of this paper.



ICIC EXPRESS LETTERS, VOL.10, NO.9, 2016 2063

0.6605

0.661

0.6615

0.662

0.6625

0.663

0.6635

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF1

0.648

0.65

0.652

0.654

0.656

0.658

0.66

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF2

0.61

0.62

0.63

0.64

0.65

0.66

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF3

0.23

0.235

0.24

0.245

0.25

0.255

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF4

−0.05

0

0.05

0.1

0.15

0.2

0.25

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF5

0

0.05

0.1

0.15

0.2

0.25

0.3

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF6

0.487

0.488

0.489

0.49

0.491

0.492

0.493

0.494

0.495

0.496

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF7

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF8

0.5

0.55

0.6

0.65

0.7

0.75

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

MOEA/D−DRA MOEA/D−AF MOEA/D−AF+RI

H
V

UF10

Figure 1. Box plots of Ihv based on twenty independent runs obtained by
MOEA/D-DRA, MOEA/D-AF, and MOEA/D-AF+RI in solving UF1-
UF10
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Figure 2. Box plots of IIGD based on twenty independent runs obtained
by MOEA/D-DRA, MOEA/D-AF, and MOEA/D-AF+RI in solving UF1-
UF10
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