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Abstract. For a class of multivariable output error moving average (OEMA) systems,
which include different types of parameter forms: a parameter vector and a parameter
matrix, the conventional parameter estimation methods cannot be applied to these sys-
tems. In order to deal with this problem, a decomposition based estimation algorithm
is presented. The basic idea is to employ the matrix transformation technique to de-
compose the multivariable OEMA system into several subsystems according to the output
dimensions, to present a decomposition based least squares algorithm to estimate the pa-
rameters of each subsystem. The simulation results indicate that the proposed algorithm
is effective.
Keywords: System identification, Multivariable system, Decomposition, Least squares

1. Introduction. Multivariable modelling has been widely used in various systems [1, 2,
3, 4, 5], and arouses much attention in the system identification area. The identification
approaches for multivariable systems mainly include the subspace methods, the least
squares/stochastic gradient methods, the maximum likelihood methods, and the blind
identification methods.

In a class of difference equation multivariable systems, there exist scalar polynomial
coefficients and matrix polynomial coefficients, so the identification model of the systems
naturally contains both a parameter vector and a parameter matrix, and the standard least
squares method cannot be directly applied to the identification model. The hierarchical
identification principle is an effective technique to solve the identification problems of this
type of systems. The idea of the hierarchical identification principle is to interactively
estimate the parameter vector and the parameter matrix of the multivariable systems
[6, 7]. Based on the hierarchical identification principle, a series of works have been
published, including the hierarchical least squares based iterative identification method
for multivariable CARMA-like systems [8], for multivariable nonlinear systems [9], and
the hierarchical gradient based iterative estimation algorithm for multivariable output
error moving average systems [10].

In the previous study [11], the author explored the identification method of the sin-
gle variable OEMA systems by using the data filtering-based and auxiliary model-based
least squares algorithm. This paper investigates the parameterization of multivariable
OEMA systems, to decompose a multivariable OEMA system into m subsystems (m is
the output dimensions), each of which contains only a parameter vector, and to present a
decomposition based least squares method to estimate the parameters of the system. The
characteristics of the proposed method are that the least squares method can be directly
applied to the m subsystems.
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The rest of the paper is organized as follows. Section 2 demonstrates the identification
problem of the multivariable OEMA system. Section 3 shows the system decomposition
method and presents a decomposition based least squares (DLS) identification algorithm.
Section 4 provides a numerical example for the proposed DLS algorithm. Finally, the
concluding remarks are involved in Section 5.

2. Problem Formulation. Consider the following multivariable output error moving
average (OEMA) model,

y(t) =
Q(z)

α(z)
u(t) + D(z)v(t), (1)

where y(t) := [y1(t), y2(t), · · · , ym(t)]T ∈ Rm is the system output vector, u(t) ∈ Rr is
the system input vector, v(t) := [v1(t), v2(t), · · · , vm(t)]T ∈ Rm is a white noise vector
with the normal distribution vj(t) ∼ N(0, σ2), j = 1, 2, · · · ,m, α(z) ∈ R is the system
characteristic polynomial in z−1 (z−1 is the unit backward shift operator: z−1y(t) =
y(t − 1)), Q(z) ∈ Rm×r is a matrix polynomial in z−1, and D(z) ∈ R is a polynomial in
z−1, and they are defined as

α(z) := 1 + α1z
−1 + α2z

−2 + · · · + αnz−n, αi ∈ R,

Q(z) := Q1z
−1 + Q2z

−2 + · · · + Qnz−n, Qi ∈ Rm×r,

D(z) := 1 + d1z
−1 + d2z

−2 + · · · + dnz−n, di ∈ R.

The diagram of this system is depicted in Figure 1. Note that there exist two types
of coefficients: the matrix polynomial Q(z), and the scalar polynomials α(z) and D(z),
respectively. The parameterization difficulty of the multivariable OEMA system is that
we can not get a regression model, to which the standard estimation method can be
directly applied, due to being unable to merge two different types of coefficients.
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Figure 1. The multivariable OEMA systems

3. The Decomposition Based Least Squares Algorithm. In this section, we decom-
pose the multivariable output error moving average (OEMA) system into m subsystems
(m is the output dimensions), and directly apply a least squares algorithm to estimating
the parameters of each subsystem. The description is as follows.

The internal variable x(t) is the noise-free output vector,

x(t) =
Q(z)

α(z)
u(t), (2)

and we have

x(t) = [1 − α(z)]x(t) + Q(z)u(t). (3)

Then, Equation (1) can be written as

y(t) = x(t) + D(z)v(t), (4)

= [1 − α(z)]x(t) + Q(z)u(t) + D(z)v(t). (5)
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Let

Qi :=


Qi(1)

Qi(2)
...

Qi(m)

 , Qi ∈ Rm×r,

Q(j)(z) := Q1(j)z
−1 + Q2(j)z

−2 + · · · + Qn(j)z
−n ∈ R1×r,

where Qi(j) (j = 1, 2, · · · ,m) ∈ R1×r is the jth row elements of Qi, and Q(j)(z) (j =
1, 2, · · · ,m) ∈ R1×r is the jth row elements of Q(z).

Then Equations (3) and (5) can be written as
x1(t)
x2(t)

...
xm(t)

 = [1 − α(z)]


x1(t)
x2(t)

...
xm(t)

 +


Q(1)(z)
Q(2)(z)

...
Q(m)(z)

u(t),


y1(t)
y2(t)

...
ym(t)

 = [1 − α(z)]


x1(t)
x2(t)

...
xm(t)

 +


Q(1)(z)
Q(2)(z)

...
Q(m)(z)

u(t) + D(z)


v1(t)
v2(t)

...
vm(t)

 . (6)

That is, system (6) can be decomposed into m subsystems

y1(t) = [1 − α(z)]x1(t) + Q(1)(z)u(t) + D(z)v1(t),

y2(t) = [1 − α(z)]x2(t) + Q(2)(z)u(t) + D(z)v2(t),

...

ym(t) = [1 − α(z)]xm(t) + Q(m)(z)u(t) + D(z)vm(t).

The jth subsystem can be represented as

yj(t) = [1 − α(z)]xj(t) + Q(j)u(t) + D(z)vj(t)

= [1 − α(z)]xj(t) + [Q1(j)z
−1 + Q2(j)z

−2 + · · · + Qn(j)z
−n]u(t) + D(z)vj(t), (7)

j = 1, 2, · · · ,m.

Define the parameter vectors and the information vectors as follows

α := [α1, α2, · · · , αn]T ∈ Rn,

d := [d1, d2, · · · , dn]T ∈ Rn,

Q(j) := [Q1(j), Q2(j), · · · , Qn(j)] ∈ R1×nr,

θj := [αT , Q(j)]
T ∈ Rn+nr,

Θj := [αT , Q(j), d
T ]T ∈ R2n+nr,

Θ := [αT , Q(1), Q(2), · · · , Q(m), d
T ]T ∈ R2n+nrm,

ϕj(t) :=
[
−xj(t − 1),−xj(t − 2), · · · ,−xj(t − n), uT (t − 1), uT (t − 2),

· · · , uT (t − n)
]T ∈ Rn+nr,

χj(t) := [ϕT
j (t), vj(t − 1), vj(t − 2), · · · , vj(t − n)]T ∈ R2n+nr.

From (7), we get

xj(t) = −
n∑

i=1

αixj(t − i) +
n∑

i=1

Qi(j)u(t − i) = ϕT
j (t)θj, (8)

yj(t) = −
n∑

i=1

αixj(t − i) +
n∑

i=1

Qi(j)u(t − i) +
n∑

i=1

divj(t − i) + vj(t)
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= χT
j (t)Θj + vj(t). (9)

For the unknown internal variable xj(t− i) in ϕj(t) and χj(t) and the unavailable noise
variable vj(t − i) in χj(t), we replace them with their estimates x̂j(t − i) and v̂j(t − i).
From (8) and (9), the estimates x̂j(t − i) and v̂j(t − i) can be computed by replacing

ϕj(t) and χj(t) with their estimates ϕ̂j(t) and χ̂j(t), and replacing θj and Θj with their

estimates θ̂j(t) and Θ̂j(t),

x̂j(t) = ϕ̂T
j (t)θ̂j(t), (10)

v̂j(t) = yj(t) − χ̂T
j (t)Θ̂j(t). (11)

Define the following cost function

J(Θj) :=
t∑

i=1

[
yj(i) − χT

j (i)Θj

]2
.

By replacing the unknown variables xj(t − i) and vj(t − i) in χj(t) with their estimates
x̂j(t − i) and v̂j(t − i), according to the least squares principle [12], we can obtain the

decomposition based least squares (DLS) algorithm for estimating Θ̂j(t):

Θ̂j(t) = Θ̂j(t − 1)+Lj(t)
[
yj(t) − χ̂T

j (t)Θ̂j(t − 1)
]
, j = 1, 2, · · · ,m, (12)

Lj(t) = Pj(t − 1)χ̂j(t)
[
1 + χ̂T

j (t)Pj(t − 1)χ̂j(t)
]−1

, (13)

Pj(t) =
[
I − Lj(t)χ̂

T
j (t)

]
Pj(t − 1), Pj(0) = P0I, (14)

ϕ̂j(t) =
[
−x̂j(t − 1),−x̂j(t − 2), · · · ,−x̂j(t − n), uT (t − 1), uT (t − 2),

· · · , uT (t − n)
]T

, (15)

χ̂j(t) =
[
ϕ̂T

j (t), v̂j(t − 1), v̂j(t − 2), · · · , v̂j(t − n)
]T

, (16)

x̂j(t) = ϕ̂T
j (t)θ̂j(t), (17)

v̂j(t) = yj(t) − χ̂T
j (t)Θ̂j(t), (18)

α̂(t) =
1

m

m∑
j=1

α̂(j)(t), α̂(j)(t) = Θ̂j(t)(1 : n), (19)

d̂(t) =
1

m

m∑
j=1

d̂(j)(t), d̂(j)(t) = Θ̂j(t)(n + nr + 1 : 2n + nr), (20)

Θ̂j(t) :=
[
α̂T (t), Q̂(j)(t), d̂

T (t)
]T

, (21)

Θ̂(t) =
[
α̂T (t), Q̂(1)(t), Q̂(2)(t), · · · , Q̂(m)(t), d̂

T (t)
]T

. (22)

The flowchart of computing the parameter estimates Θ̂j(t) by the DLS algorithm in
(12)-(22) is shown in Figure 2.

4. Example. Consider a two-input two-output OEMA model,

y(t) =
Q(z)

α(z)
u(t) + D(z)v(t),

where

y(t) =

[
y1(t)
y2(t)

]
, u(t) =

[
u1(t)
u2(t)

]
, v(t) =

[
v1(t)
v2(t)

]
,

α(z) = 1 − 0.35z−1, D(z) = 1 + 0.15z−1,
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Q(z) =

[
1.50 0.80
0.80 1.50

]
z−1,

α = −0.35, d = 0.15,

Θ1 = [−0.35, 1.50, 0.80, 0.15]T , Θ2 = [−0.35, 0.80, 1.50, 0.15]T ,

Θ = [−0.35, 1.50, 0.80, 0.80, 1.50, 0.15]T .

In simulation, the inputs {u1(t)} and {u2(t)} are taken as two persistent excitation signal
sequences with zero mean and unit variances, {v1(t)} and {v2(t)} are taken as two white
noise sequences with zero mean and variances σ2

1 for v1(t) and σ2
2 for v2(t). We take the

data length L = 3000, apply the DLS algorithm to estimating the parameters of this
example system, and the parameter estimates and the estimation errors are shown in
Table 1, where the noise variances are σ2

1 = σ2
2 = σ2 = 0.202 and σ2

1 = σ2
2 = σ2 = 0.402.

The estimation errors of the DLS algorithm are

δ :=

∥∥∥Θ̂(t) − Θ
∥∥∥

∥Θ∥
× 100%.

�
�

�
�Start

?
Initialize: t = 1

?
Form ϕ̂j(t) and χ̂j(t)

?

�

Compute Lj(t) and Pj(t)

?
Update Θ̂j(t) by (12)

?
Compute x̂j(t) and v̂j(t)

?
Compute α̂(t) and d̂(t),

and reupdate Θ̂j(t) by (21)

?
t := t + 1

Figure 2. The flowchart of computing the DLS estimates Θ̂j(t)

From Table 1, we can draw the following conclusions.

• The proposed DLS algorithm can give close to accurate parameter estimates under
the low noise levels – see the estimation errors of the last column in Table 1.

• As shown in Table 1, with the same data lengths, the smaller the white noise vari-
ances are, the faster the convergence rate of the parameter estimates is.

• With the increasing of t, the estimation errors are generally small – see the estimation
errors in Table 1.

5. Conclusions. In this paper, we propose a decomposition based least squares (DLS)
algorithm to estimate the parameters of a multivariable OEMA model. Since there are
two types of coefficients in the system, we employ the matrix transformation technique
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Table 1. The estimates and errors under different σ2

σ2 t α1 Q1(1, 1) Q1(1, 2) Q1(2, 1) Q1(2, 2) d1 δ (%)

0.202 100 −0.41744 1.42609 0.81640 0.64101 1.42601 0.12348 8.39289

200 −0.37350 1.51552 0.76474 0.63826 1.45843 0.10413 7.35228

500 −0.33178 1.51815 0.81614 0.76152 1.48505 0.09704 3.02752

1000 −0.35011 1.50972 0.78433 0.74737 1.48043 0.08597 3.58000

2000 −0.35027 1.48125 0.80705 0.79409 1.49556 0.09089 2.58182

3000 −0.34557 1.49258 0.80522 0.78880 1.49852 0.08961 2.55772

0.402 100 −0.37949 1.27929 0.94667 0.99335 1.23140 0.22629 17.73893

200 −0.36166 1.44165 0.88561 0.82794 1.34981 0.17322 7.65787

500 −0.36501 1.46063 0.88036 0.79817 1.45825 0.12492 4.23159

1000 −0.35410 1.46781 0.85412 0.75401 1.47239 0.10135 3.94605

2000 −0.34156 1.51779 0.80308 0.77499 1.49155 0.08334 3.05717

3000 −0.34388 1.51007 0.80609 0.78421 1.47637 0.08444 2.98559

True values −0.35000 1.50000 0.80000 0.80000 1.50000 0.15000

to decompose the system into several subsystems according to the output dimensions,
and get regression models, to which the standard least squares algorithm can be applied
directly. The estimates of some parameters for the DLS algorithm are obtained by taking
an average of their estimates from all subsystems, so the parameter estimation accuracy
of the DLS algorithm is high.

In the future research, we will further focus on the decomposition based identification
methods for multivariable nonlinear systems, especially, for multivariable block-oriented
nonlinear systems.
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