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Abstract. A linear closed-form algorithm is proposed for TOA-based source localization
when the transmit time is assumed to be unavailable. The source positions are represented
as the algebraic solutions which avoid the problem of local optimum of the numerical
calculation. By converting the positioning optimization model to the problem of linear
least square estimation, the initial solution to source position estimation is obtained by
using the proposed linear closed-form algorithm. Considering the initial solution as input
parameter, the position refinement technique is designed to improve the source position.
The simulations show that the positioning accuracy of the designed algorithm can be close
to the Cramer-Rao lower bound (CRLB) of source position estimation. The positioning
error of the proposed algorithm is unrelated with the transmit time.
Keywords: Wireless sensor networks, Localization, Linear least square, Time of arrival

1. Introduction. Location awareness has received a great deal of interest in many wire-
less systems such as cellular networks, wireless local area networks, and wireless sensor
networks due to its capability to provide wide range of add-on applications [1]. Location-
based services such as location-based advertisement, and location-based social networking
have become more important in order to enhance the future lifestyle. The wireless sys-
tem applications offered by location awareness will enable ubiquitous and context aware
network services which necessitate the location of the wireless device to be accurately
estimated. Obtaining accurate location information becomes an important task in these
wireless system applications.

Configuring GPS to obtain the positions of sensors is not suitable for wireless localiza-
tion due to the expensive hardware costs, large volume and high energy consumption. So
these limitations have inspired a new method to estimate the position of the source target
by using the anchors’ known positions. In the process of position estimation, the rela-
tive distance should be measured or estimated between the nodes. The most important
kinds utilize the received signal strength (RSS) [2], angle of arrival (AOA) [3], and signal
propagation time, respectively. RSS algorithms use the received signal power for object
positioning; their accuracies are limited by the fading of wireless signals. AOA algorithms
require either directional antennas or receiver antenna arrays. Signal propagation time
based algorithms estimate the object location using the time it takes the signal to travel
from the transmitter to the target and from there to the receivers. They achieve very ac-
curate estimation of object location if combined with high-precision timing measurement
techniques, such as ultrawideband (UWB) signaling, which allows centimeter and even
submillimeter accuracy. The algorithms based on signal propagation time can be further
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classified into Time of Arrival (TOA) [4] and Time Difference of Arrival (TDOA) [5]. TOA
algorithms employ the information of the absolute signal travel time from the transmitter
to the target and thence to the receivers.

A number of localization algorithms became available for the wireless localization. Max-
imum likelihood (ML) estimator [6] is an asymptotically unbiased estimator for TOA
based wireless localization problem. However, it is a nonlinear least squares estimator for
Gaussian measurement noise. The cost function of the ML estimator is severely nonlinear
and noncovex, so numerical solution of ML estimator strongly depends on the initializa-
tion. If the initialization is not sufficiently close to the global minimum, the numerical
solution may converge to a local minimum or a saddle point causing a large estimation
error. Therefore, determining an appropriate initialization point is a crucial problem in
optimizing the ML cost function. As a result, some approaches have been introduced to
address the shortcomings of ML problem. The semidefinite programming (SDP) in [7, 8]
by convex relaxation technique is a solution to the ML convergence problem. In the semi-
definite relaxation technique, the nonlinear and nonconvex ML problem is transformed
into a convex optimization problem. The advantage of SDP technique is that its cost
function does not have local minima and thus convergence to the global minimum is
guaranteed. The downside is that the SDP technique is sub-optimal and cannot achieve
the best possible performance in all conditions. It has a complicated structure and high
computational complexity. Based on many approximations the linear analytical solutions
in [9] are proposed to obtain the algebraic solutions of the target positions.

In this paper an accurate linear closed-form algorithm is proposed to estimate the source
position when considering the transmit time as unavailable. The accurate linear closed-
form algorithm is designed by transforming the nonlinear equations to linear equations via
subtraction of each equation from all others and obtains the initial solution of the source
position. Then the refinement technique is proposed to improve the positioning accuracy.
This paper contains a number of symbols. Following the convention, we represent the
matrices as bold case letters. If we denote the matrices as (∗), (∗)−1 represents matrix
inverse. If (∗) contains noise, (∗)e would denote its estimated value while ∆(∗) is the
noise component. ∥∗∥ denotes ℓ2 norm. A[i,j] denotes the element at the ith row and
jth column of matrix A. The rest of this paper is structured as follows. Section 2
presents the problem specification of TOA-based wireless localization. Section 3 derives
the position CRLB for TOA-based soucce localization when the transmit time is assumed
to be unknown. Section 4 describes linear estimation method of source position in detail.
Section 5 analyzes the simulation results. The conclusion is represented in Section 6.

2. Problem Specification. Assume in a 2-dimensional (or 3-dimensional, for the sake
of convenience, we assume in 2-dimensional, that the analysis method of 3-dimensional
is the same with 2-dimensional) plane the known positions of anchors are xi = [xi yi]

T ,
i = 1, 2, . . . , N . These anchors with known positions are used to locate the position of
an unknown source target node, which is denoted as x = [x y]T . When the source node
transmits the signal at the time t0, the anchor i receives the signal at time ti. Considering
the line of sight (LOS) propagation, we can obtain that

ti =
∥xi − x∥

c
+ t0 + εi (1)

where i = 1, 2, . . . , N , and c is the speed of light. εi is the noise which is a zero-mean
white Gaussian process with known variance δ2

i . The zero-mean assumption is valid as
long as the multipath effect. Although the parameters δ2

i are usually unknown in practice,
they can be determined for a particular signaling type in the TOA-based location system
by channel measurement. Considering the transmit time t0 of source node as unknown
parameter, the source position estimation can be modeled as the well known maximum
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likelihood problem

min
x,t0

N∑
i=1

1

δ2
i

(
ti −

∥xi − x∥
c

− t0

)2

(2)

The numerical method provides an accuracy solution to (2), but the solution of numerical
method requires a reasonable initialization close to the true solution. If the initialization
is not sufficiently close to the global minimum, the iterative algorithm may converge to a
local minimum or a saddle point causing a large estimation error. As a result, semidefinite
programming (SDP) techniques have been introduced to address the ML problem. The
downside is that the SDP technique is sub-optimal and cannot achieve the best possible
performance in all conditions. So based on many approximations, linear estimator having
a closed-form solution is derived in this paper.

3. Performance of CRLB. The CRLB defines a lower bound on the variance of any
unbiased estimator and is employed as a benchmark for evaluating the performance of
estimators. The CRLB of the unknown parameters are the diagonal elements of the
inverse of the Fisher information matrix. Since the transmit time of the source target
is not available to the estimator, it should also be taken into account as an unknown
parameter. Let us recall the vector of unknown parameters Φ = [xT t0]

T . Here when
the transmit time t0 is unknown, the FIM is denoted as F, which is also rewritten as

F = −∂2 ln P (t|Φ)

∂ΦT ∂Φ
(3)

where

P (t|Φ) =
M∏
i=1

1√
2πδi

exp

−

(
ti − ∥xi−x∥

c
− t0

)2

2δ2
i

 (4)

Therefore, the elements of matrix F can be further represented as

F[1:2,1:2] =
N∑

i=1

1
c2δ2

i

(x−xi)
T (x−xi)

∥x−xi∥2

F[1:2,3] =
N∑

i=1

1
cδ2

i

(x−xi)
∥x−xi∥

F[3,1:2] = FT
[1:2,3]

F[3,3] =
N∑

i=1

1
δ2
i

(5)

The CRLB of the unknown parameters are the diagonal elements of the inverse of the
FIM. So the CRLB of the target position x is written as

CRLB
(
x[r]

)
= F−1

[r,r] (6)

where r = 1, 2. Given the FIM, the CRLB is obtained with

CRLB(x) = F−1
[1,1] + F−1

[2,2] (7)

4. Linear Estimator. The proposed linear closed-form estimator is designed with two
steps. The first step is to estimate the initial source location with the linear method. By
eliminating the unknown parameter t0, the position estimation problem is modeled as lin-
ear estimation to obtain the initial solution to source position. Secondly the initial source
solution is further refined to improve the positioning accuracy. The source localization
problem consists of estimating x from the observed time measurements ti. In this section,
the transmit time t0 is assumed be unavailable. Weighting least square (WLS) solution
is introduced to exploit the problem for TOA-based source localization.
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4.1. Initial source position. To eliminate the unknown parameter t0, (1) is rewritten
as

∥xi − x∥ = c(ti − t0 − εi) (8)

Squaring both sides of (8) and neglecting the high terms, (8) is rewritten as

−2xix − 2yiy + x2 + y2 + 2c2tit0 − c2t20 = c2t2i − x2
i − y2

i − 2c(ti − t0)εi (9)

where i = 1, 2, . . . , N . Subtracting the Nth equation from the first N − 1 equations, we
obtain that

2(xN − xi)x + 2(yN − yi)y + 2c2(ti − tN)t0

= c2
(
t2i − t2N

)
− x2

i − y2
i + x2

N + y2
N − 2c(ti − t0)εi + 2c(tN − t0)εN (10)

where i = 1, 2, . . . , N − 1. Let z = [x y t0], (10) can be rewritten as matrix form

Az = b + α (11)

where the row vector of A is equal to [2(xN − xi) 2(yN − yi) 2c2(ti − tN)]. The element
value of b and α are equal to [c2 (t2i − t2N) − x2

i − y2
i + x2

N + y2
N ] and [−2c(ti − t0)εi +

2c(tN − t0)εN ], respectively. A ∈ RN×3, b ∈ RN and α ∈ RN . So the weighting least
square (WLS) solution to (11) is

z =
(
ATΣ−1

α A
)−1

AT Σ−1
α b (12)

where Σα = E
(
αT α

)
. The element value of Σα is represented as

Σα[i, j] =

{
4c2 (tN − t0)

2 δ2
N i ̸= j

4c2 (tN − t0)
2 δ2

N + 4c2(ti − t0)
2δ2

i i = j
(13)

where Σα[i, j] represents the ith row and jth column element of covariance Σα. The
estimation error in z is denoted as ∆z, which can be represented as

∆z =
(
ATΣ−1

α A
)−1

ATΣ−1
α α (14)

where α is the noise vector, so ∆z is unknown. When the noise terms in Σα are negligible,
it is straightforward to show that ∆z has zero mean, because α is zero mean.

The evaluations of (12) need the weighting matrix Σ−1
α that relies on the transmit time

t0 which is not available. We preliminarily consider Σ−1
α as unit matrix I. Then putting

the initial estimation t0 into (13) gives an approximated Σ−1
α and reusing it in (12) would

produce a better solution of the source position. According to the definition of z, we
obtain the initial source position estimation xe

i = z(1 : 2) and the estimated transmit
time te0 = z(3).

4.2. Position refinement. The initial solution of source position is obtained, but the
substraction method enlarges the noises. The initial estimation xe

i is not optimal, so the
further refinement would improve the positioning accuracy. Let x = xe + ∆x, which
means that x = xe + ∆x and y = ye + ∆y. Similarly t0 = te0 + ∆t. Substituting (9) with
these equations, we can obtain that

2 (xe − xi) ∆x + 2 (ye − yi) ∆y + 2c2 (ti − te0) ∆t0

= c2 (ti − te0)
2 −

[
(xi − xe)2 + (yi − ye)2] − 2c (ti − t0) εi (15)

where i = 1, 2, . . . , N . Let ∆z =
[
∆xT ∆t0

]T
, then (15) is rewritten as matrix form

C∆z = d + β (16)

where the row vector of C is equal to [2 (xe − xi) 2 (ye − yi) 2c2 (ti − te0)]. The element
of vector d is equal to

[
c2 (ti − te0)

2 −
[
(xi − xe)2 + (yi − ye)2]]. The element of vector β
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is equal to [−2c (ti − t0) εi]. C ∈ RN×3, d ∈ RN and β ∈ RN . So the WLS solution to
(16) is

∆z =
(
CTΣ−1

β C
)−1

CTΣ−1
β d (17)

Since εi are independent for i ̸= j, so the covariance matrix of β, Σβ has elements

Σβ[i, j] =

{
0 i ̸= j
4c2(ti − t0)

2δ2
i i = j

(18)

where i, j = 1, 2, . . . , N . Σβ relies on the estimated transmit time t0 which can be
approximated with te0. Extracting from ∆z we obtain the refined ∆x = ∆z(1 : 2). The
improved source position is denoted as x, which can be represented as

x = xe + ∆x (19)

In summary, we firstly estimate the initial source position by using the WLS method
with (12) and obtain the initial source position estimation xe

i and the transmit time te0.
Then the position refinement obtained with (17) is added to the initial source position
for improving the positioning accuracy.

5. Evaluation. To test the performance of proposed algorithm, the simulations are con-
ducted with MATLAB software. The anchors are deployed in a square area of 100 m ×
100 m. In the region five anchors are set at the points (20, 50), (60, 95), (65, 10), (10, 80),
(10, 60). The source target is set at the point (50, 50) in a prior. The noises between the
source target and each anchor are subject to zero mean white Gaussian processes with
zero mean and identical variance δ2. In order to evaluate the positioning performance
in different conditions, mean square error (MSE) is used to evaluate the positioning ac-
curacy. We verify the performance of the proposed method through Monte Carlo (MC)
simulations and the number of samples used in the MC procedure is 10000. We firstly
give the performance in terms of position MSE as the noises increase.

5.1. Impacts of noises. To test the impact noises, the transmit time is set at t0 = 5000
ns in a prior. When the noise variance δ2 is varied from 12 to 102 (The noise in log scale
is varied from 0 dB to 20 dB), Figure 1(a) plots the performance comparison of the initial
solution and the position refinement under different noises. It is seen from Figure 1(a) that
the position MSE is approximately linear with the noise in log scale. The MSE in log scale
performance degrades with larger noises. The position MSE of the proposed refinement
is less than that of the initial solution. For instance, when the noise variance δ2 is set
to 12 (noise variance in log scale is set to 0 dB), the position MSE in log scale with the
refinement technique is about −10.0 dB, which is very close to the CRLB performance.
However, the MSE in log scale of the initial solution is −8.8 dB. When all noise variance
δ2 is set to 102 (noise variance in log scale is set to 20 dB), the position MSE in log scale
with the refinement technique is increased to 10.7 dB. However, the position MSE of the
initial solution is 11.8 dB when the noise variance δ2 is set to 102.

To further show the performance of the proposed algorithms with unknown transmit
time, we plot the cumulative distribution function (CDF) in Figure 1(b) when the noise
variance δ2 is set to 12. It can be seen from Figure 1(b) that the proposed refinement
algorithm performs well and that the estimation errors in over 65% of the simulated runs
are less than the CRLB. However, the estimation errors of initial solution in only 48% of
the simulated runs are less than the CRLB. 90% of the estimation error is less than 0.24
in the position refinement and 0.32 in the initial solution. Hence, the performance of the
proposed refinement algorithm is quite good since the position refinement can reduce the
localization error.
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Figure 1. Impact of noises

5.2. Transmit time. When the transmit time is assumed to be unknown, the linear
closed-form algorithm for the source position estimation is proposed. Apparently the es-
timation of source location is unrelated with the transmit time for the proposed algorithm.
To test the MSE performance of different methods when the transmit time is unavailable,
the noise variance δ2 is set to 12, and Figure 2(a) plots the performance comparison of
different methods as the transmit time increases. The order of different methods is the
same as Figure 1(a). The refined position can attain the approximate position CRLB
which provides optimal positioning accuracy. When the transmit time is set to 500 ns,
the MSE in log-scale with the refinement method is −10.1 dB. When the transmit time
is set to 5000 ns, the MSE in log-scale with the refinement method is also −10.1 dB. Due
to the effective refinement the MSE in log-scale of the refinement is reduced by about 1.4
dB compared with that of the initial solution.

When the noise variance is set to 12, 22 and 42, Figure 2(b) plots positioning MSE
versus the transmit time using three different methods. It is seen from Figure 2(b) that
MSE performance is unrelated with the transmit time. When the noises are set to 42

and the transmit time is set to 500 ns, the position MSE of refinement method is 2.4 dB.
When the noises are set to 42 and the transmit time is set to 5000 ns, the position MSE
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Figure 2. Performance comparison with different transmit time

of the refinement method is also 2.4 dB. It is also seen from Figure 2(b) that the MSE
performance degrades as the noise increases. When the noise variance is increased from
12 to 42, the MSE of refinement method is also increased from −10.0 dB to 2.4 dB.

6. Conclusion. In this paper, an accurate linear algebraic solution to the source position
estimation is proposed by considering the transmit time as unavailable. By eliminating
the nuisance parameters, the optimization problem is transformed into a linear least-
squares estimation problem, so the initial solution to the source position estimation is
obtained. Then the source position is further refined and its exact solution is obtained.
The source position estimation of the algorithm is unrelated with the transmit time. The
linear estimation method does not require iteration or initialization compared with the
solution to the numerical calculation. Due to a large number of equality constraints and
variables, the convex SDP algorithm runs slower than the linear algorithm. The proposed
linear closed-form algorithm has the advantages of low computation complexity and high
positioning accuracy compared with the convex SDP algorithm. The linear proposed
closed-form algorithm can also be extended to multiple source nodes in the future work.
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