
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 9, September 2016 pp. 2105–2113

PARALLEL FREQUENT SUBGRAPH MINING ON MULTI-CORE
PROCESSOR SYSTEMS

Bao Huynh1, Dang Nguyen2 and Bay Vo3

1Center for Applied Information Technology
2Division of Data Science
Ton Duc Thang University

19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City 70000, Vietnam
{huynhquocbao; nguyenphamhaidang }@tdt.edu.vn

3Faculty of Information Technology
Ho Chi Minh City University of Technology

475A Dien Bien Phu Street, Ward 25, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
bayvodinh@gmail.com

Received March 2016; accepted June 2016

Abstract. Frequent subgraph mining is an important topic of graph mining, which
has many applications such as web link analysis, fraud detection, and social networks.
Numerous algorithms for mining frequent subgraphs have been proposed; most of them,
however, used sequential strategies, which under-utilize the power of multi-core proces-
sor computers. In this paper, we propose a parallel algorithm to overcome this weakness.
Firstly, the multi-core processor architecture is introduced. Secondly, we present the gSpan
algorithm as the basic framework of our algorithm. Finally, we propose an efficient par-
allel algorithm for mining frequent subgraphs. The performance and scalability of the
proposed algorithm are illustrated through extensive experiments on two datasets, namely
chemical and compound.
Keywords: Data mining, Frequent subgraph mining, Parallel computing, Multi-core
processor

1. Introduction. Graph mining is an important topic in data mining with many applica-
tions such as web link analysis [1], fraud detection [2] and social networks [3,4]. Frequent
subgraph mining (FSM) is an essential part of graph mining. The goal of FSM is to
discover all frequent subgraphs over a collection of graphs. A subgraph is called frequent
if its occurrence is above a user-specified threshold. Numerous algorithms for mining fre-
quent subgraphs have been proposed in recent years [5-14]. The AGM [14] is an algorithm
which shares similar characteristics with the Apriori-based frequent itemset mining [15].
The Apriori property was also used in other algorithms for FSM such as FSG [11,16],
AcGM [17] and AGM-Hash [18]. These algorithms inherit two weaknesses from Apriori:
(1) joining two k-frequent subgraphs to generate (k+1)-subgraph candidates; (2) checking
the frequency of these candidates separately. In order to avoid the overheads occurred in
Apriori-based algorithms, several algorithms without candidate generation have been de-
veloped such as gSpan [7], FP-GraphMiner [13] and G-Tries [19]. These algorithms adopt
the concept of pattern growth mentioned in [20], which expands patterns from a single
pattern directly. While Apriori-based approach must use the breath-first search (BFS)
strategy because of its level wise candidate generation, the pattern growth approach can
use both BFS and depth-first search (DFS). Most existing FSM methods are sequential
algorithms, causing that they require much effort and time to mine large graph datasets.
Recently, researchers have begun using parallel and distributed computing techniques to
accelerate the computation [21-27]. Along with the development of modern hardware,
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multi-core CPUs, GPUs, and Map/Reduce become potential and feasible tools for par-
allel computing [8,19,24,28,29]. Thus, some parallel algorithms have been developed for
FSM recently. For example, Buehrer et al. [22] proposed a parallel algorithm for graph
mining on the shared memory architecture. In 2015, Vo et al. [28] proposed a parallel
algorithm for frequent subgraph mining on the multi-core processor. Kessl et al. [24] used
CUDA to mine graph-based substructure patterns on GPUs. In addition, some studies
have tried to parallelize FSM algorithms in the Map/Reduce paradigm [25-27,30]. It can
be seen that applying parallelism to FSM is an emerging trend.

This study aims to propose an efficient parallel strategy for frequent subgraph mining
on multi-core processor computers. Firstly, we introduce the multi-core processor archi-
tecture and its applications in data mining. Secondly, we present gSpan (graph-based
Substructure pattern mining) which explores frequent substructure without candidate
generation [7] as the basic framework of our proposed algorithms. Finally, we propose a
parallel strategy for gSpan based on the parallelism model in Microsoft .NET Framework
4.0.

The rest of paper is organized as follows. Section 2 introduces the multi-core processor
architecture and benefits of parallel computing in data mining. Section 3 reviews gSpan
while Section 4 describes the proposed parallel algorithm. Section 5 presents experiments
to show the performance of our algorithm. Conclusions and future work are discussed in
Section 6.

2. Multi-core Processor Architecture. A multi-core processor (Figure 1) is a single
computing component with two or more independent central processing units (cores)
in the same physical package [31]. Compared to a computer cluster (Figure 2) or a
symmetric multi-processor system (Figure 3), the multi-core processor architecture has
many desirable properties, for example, each core has direct and equal access to all the
system’s memory and the multi-core chip also allows higher performance at lower energy
and cost. Parallel mining on multi-core processor computers has been widely adopted in
many research fields, such as frequent itemset mining [29,32], class association rule mining
[33], correlated pattern mining [34], tree-structured data mining [35], and generic pattern
mining [36].

Figure 1. Multi-core processor: one chip, two cores, two threads1

1Source: http://software.intel.com/en-us/articles/multi-core-processor-architecture-explained
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Figure 2. Computer cluster2

Figure 3. Symmetric multi-processor system3

3. gSpan Algorithm. In this section, we briefly summarize the gSpan algorithm because
it forms the basic framework of our proposed parallel algorithms.

gSpan uses the depth-first search (DFS) strategy to traverse its search tree. To generate
a child node, gSpan extends the parent node by adding one new edge. Each node in the
tree is assigned a unique DFS-code and this code is used to determine the isomorphism of
subgraphs. The idea of gSpan is to label a subgraph by a DFS-code and create children
DFS-codes from the right-most path of DFS tree. If a subgraph has a minimal DFS-code,
it is added to the result and used to find the next subgraph. This process is recursively
executed until the DFS-code of subgraph is non-minimal.

Definition 3.1. (DFS code) [7]: A DFS tree T is built through the DFS of a graph G.
The depth-first traverse of the vertices forms a linear order, which can be used to label
these vertices. An edge sequence (ei) is produced as follows. Assume e1 = (i1, j1) and
e2 = (i2, j2):

(1) if i1 = i2 and j1 < j2, then e1 < e2

(2) if i1 < i2 and j1 = j2, then e1 < e2

(3) if e1 < e2 and e2 < e3, then e1 < e3

The sequence ei in which i = 0, . . . , |E| − 1 is called a DFS-code, denoted as code(G, T ).

2Source: http://en.wikipedia.org/wiki/Distributed computing
3Source: http://en.wikipedia.org/wiki/Symmetric multiprocessing
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Definition 3.2. (DFS Lexicographic Order) [7]: We suppose that Z = {code(G, T )|
T is a DFS tree of G} and Z is a set which contains all DFS-codes for all graphs. DFS
Lexicographic Order is a linear order of DFS-codes defined as follows.

If α = code(Gα, Tα) = (a0, a1, . . . , am) and β = code(Gβ, Tβ) = (b0, b1, . . . , bm) with
α, β ∈ Z, then α ≤ β if one of two conditions is true:

(1) ∃t, 0 ≤ t ≤ min(m,n), ak = bk for k < t, at < bt;
(2) ak = bk for 0 ≤ k ≤ m and n ≥ m.

Definition 3.3. (Minimal DFS-code) [7]: Given a graph G and Z(G). Regarding
DFS Lexicographic Order, the minimal one, min(Z(G)), is called Minimal DFS-code of
G.

Theorem 3.1. [7]: Given two graphs G and G′, G is isomorphic to G′ if and only if
min(G) = min(G′).

Definition 3.4. (Right-most path extension rules) [23]: Given a DFS-code s and
an edge e, in either of the following two cases, s∪e is called the right-most path extension:

(1) e connects the right-most vertex and the vertices on the right-most path in the DFS
tree

(2) e connects the right-most path in the DFS tree and a new vertex

Based on four definitions and Theorem 3.1, the sequential version of gSpan is repre-
sented in Figure 4.

Input: Graph dataset D and minimum support threshold minSup
Output: All frequent subgraphs in D
Procedure: GraphSet Projection(D, S, minSup)
1. sort labels of vertices and edges in D by their frequency;
2. remove infrequent vertices and edges;
3. re-label the remaining vertices and edges in descending frequency;
4. S1 = all frequent 1-edge graphs in D;
5. sort S1 in DFS lexicographic order;
6. S = S ∪ S1;
7. for each edge e ∈ S1 do
8. initialize s with e, set s.D = {g|∀g ∈ D, e ∈ E(g)}; (only graph id is stored)
9. SubGraph Mining(D, S, s);
10. D = D ∪ D\e;
11. if |D| < minSup then
12. break;
SubGraph Mining(D, S, s)
13. if s ̸= min(s) then
14. return;
15. S = S ∪ {s};
16. generate all s’ potential children with one edge growth;
17. enumerate(s);
18. for each c, c is s’ child do
19. if support(c) ≥minSup then
20. s = c;
21. SubGraph Mining(D, S, s);

Figure 4. gSpan algorithm [7]
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4. Proposed Parallel Algorithm. In this section, we introduce our parallel versions for
gSpan. We adopt key features of gSpan such as isomorphism test and children subgraph
generation in our algorithms. A graph can be considered as an object so that we can find
a graph of k + 1-edge from a graph of k-edge.

4.1. Parallel mining frequent subgraphs with shared branch strategy. Vo et al.
[28] proposed a parallel algorithm for frequent subgraph mining based on multi-cores,
named PMFS-IB. However, the proposed method has a weakness that it is not to shrink

Input: Graph dataset D and minimum support threshold minSup
Output: All frequent subgraphs in D
Procedure: FIND-SubGraph(D, S, minSup)
1. sort labels of vertices and edges in D by their frequency;
2. remove infrequent vertices and edges;
3. re-label the remaining vertices and edges in descending frequency;
4. S1 = all frequent 1-edge graphs in D;
5. sort S1 in DFS lexicographic order;
6. S = S ∪ S1;
7. for each edge e ∈ S1 do
8. initialize s with e, set s.D = {g|∀g ∈ D, e ∈ E(g)}; (only graph id is stored)
9. EXPAND-SubGraph(D, S, s);
10. D = D ∪ D\e;
11. if |D| < minSup then
12. break;
EXPAND-SubGraph(D, S, s)
13. if s ̸= min(s) then
14. return;
15. S = S ∪ {s};
16. generate all s’ potential children with one edge growth;
17. enumerate(s);
18. for each c, c is s’ child do
19. if support(c) ≥minSup then
20. s = c;
21. Task ti = new Task(() ⇒{
22. FS = ∅; // list of frequent subgraphs returned by this task
23. MINE-SubGraph(D, FS, s)});
24. for each task in the list of created tasks do
25. collect the set of frequent subgraph (FS ) returned by each task;
26. S = S ∪ FS;
MINE-SubGraph(D, FS, s)
27. if s ̸= min(s) then
28. return;
29. FS = FS ∪ {s};
30. generate all s’ potential children with one edge growth;
31. enumerate(s);
32. for each c, c is s’ child do
33. if support(c) ≥minSup then
34. s = c;
35. MINE-SubGraph(D, FS, s);

Figure 5. PMFS-SB algorithm
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the dataset. To overcome the weakness of PMFS-IB, we propose a new parallel strategy
for gSpan (called PMFS-SB) as shown in Figure 5.

PMFS-SB assigns each branch of the DFS tree to multiple tasks. Firstly, PMFS-SB
finds all frequent 1-edge subgraphs (lines 1-6). For a given 1-edge subgraph, the algorithm
calls procedure EXPAND-SubGraph to find all frequent subgraphs grown from this 1-edge
subgraph (lines 7-9). The step at line 10 projects the dataset into a smaller graph set
with fewer vertices, edges, and graphs. In procedure EXPAND-SubGraph, all potential
children subgraphs of a single 1-edge subgraph s are generated (lines 16 and 17). The
algorithm then calls procedure MINE-SubGraph to mine all children subgraphs in parallel
(lines 21-23). The function of MINE-SubGraph is the same as EXPAND-SubGraph except
that the former is called recursively whereas the latter is called only one time. Finally,
after all tasks finish their work, their results are collected to form the complete set of
frequent subgraphs generated by this branch (lines 24-26).

4.2. Example. We apply PMFS-SB to a sample dataset shown in Figure 6 with minSup
= 100% to compare their different process. The DFS tree constructed by PMFS-SB is
shown in Figure 7. It can be seen that PMFS-SB creates four tasks t1, t2, t3, and t4 to
parallel process the same branch “a-b” (Figure 7).

Figure 6. Example of a graph dataset

Figure 7. DFS tree constructed by PMFS-SB for the sample dataset in
Figure 6

5. Experiments. All experiments were conducted on a computer with an Intel Core i7-
2600 CPU at 3.4 GHz and 4 GB of RAM, which runs Windows 7 Enterprise (64-bit) SP1.
The processor has 4 cores and an 8 MB L3-cache; it also supports Hyper-threading. The
experimental datasets were obtained from http://www.cs.ucsb.edu/∼xyan/software/. The
algorithms were coded in C# by using Visual Studio .NET 2013. Characteristics of the ex-
perimental datasets are described in Table 1. The table represents the number of graphs,
the average graph size, and the largest graph size in the dataset.
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Table 1. Characteristics of the experimental datasets

Dataset #graphs
Average size Largest size

#nodes #edges #nodes #edges
Chemical 340 27 28 214 214

Compound 422 40 42 189 196

Figure 8. #subgraph and runtimes of gSpan, PMFS-IB, and PMFS-SB
for the Chemical dataset

Figure 9. #subgraph and runtimes of gSpan, PMFS-IB, and PMFS-SB
for the Compound dataset

To demonstrate the efficiencies of PMFS-SB, we compared its execution time with those
of sequential gSpan [7] and PMFS-IB [28]. Figures 8(a) and 9(a) provide information
about the number of frequent subgraphs which is found in Chemical and Compound
respectively while Figures 8(b) and 9(b) compare the runtimes of three algorithms.

The results show that PMFS-SB outperforms gSpan and PMFS-IB in all experiments
in terms of mining time. This is because the PMFS-SB can utilize the power of the
multi-core processor architecture. When the values of minSup are low, the mining times
of gSpan and PMFS-IB dramatically rise while the figures for PMFS-SB are smaller. For
example, consider the Compound dataset with minSup = 7%. The runtime of gSpan
was 112.927(s) while that of PMFS-IB was 101.430(s) and PMFS-SB was only 69.942(s).
Similarly, consider the Chemical dataset with minSup = 3%. The execution times of
gSpan, PMFS-IB, and PMFS-SB were 53.037(s), 46.657(s), and 41.237(s) respectively.

6. Conclusions and Future Work. This paper has introduced an efficient parallel
strategy for mining frequent subgraphs in graph datasets. The primary idea of the pro-
posed algorithm is to adapt gSpan to parallel versions based on the parallelism model in
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.NET Framework 4.0. The parallel feature is implemented on the multi-core processor
architecture which does not require an extra cost for synchronization among processors
like a computer cluster.

To validate the efficiencies of the proposed algorithms, experiments were conducted
on two popular datasets, namely Chemical and Compound. The experimental results
show that the proposed method is superior to the sequential algorithm gSpan and the
parallel algorithm PMFS-IB. However, when minimum support values are very low, the
cost for context switching between tasks is still very high. The memory consumption is
also high, which may cause the memory leakage. We will study the solutions to reduce
the memory consumption and to speed up the mining time. We also expand our work to
closed subgraph and maximal subgraph mining in the future.
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