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Abstract. In this paper, we propose a method that can be used to construct Näıve
Bayesian classifier with multi-smoothing parameters which can improve the classifica-
tion performance of Näıve Bayesian classifier based on Gaussian kernel function. In
the proposed approach, mean integrated square error (MISE) is taken into account, by
which we can measure the error between estimated density and actual density. The op-
timal smoothing parameters can be determined by approximate calculation, so different
smoothing parameters of attributes can be used to construct classifiers. The compared
experiments results show the proposed method can achieve higher classifying accuracy.
Keywords: Multi-smoothing parameter, Kernel estimation, Näıve Bayesian classifier

1. Introduction. Näıve Bayesian classifier (NBC) is the simple and efficient classifier,
but it has the assumption of attributes independence; it limited its classifying accu-
racy, and a variety of methods have been proposed to improve the performance. So far,
a lot of research had been done for discrete attributes NBC, such as tree augmented
Näıve Bayesian classifier (TAN) [1], choosing structures by maximizing conditional likeli-
hood [2], and K-dependence Bayesian classifier (KDB) [3]. For the continuous attributes
Näıve Bayesian classifier, two methods commonly can be used: both the continuous at-
tributes discretization and attributes density estimation. The main problem of continuous
Bayesian classifier is attribute density estimation and dependent relationship between
attributes learning. On attribute density estimations, John and Langley [4] proposed
Gaussian Näıve Bayesian classifier and flexible Bayesian classifier (fNB) based on Gauss-
ian function and Gaussian kernel. Prezé et al. [5] improved the attribute density esti-
mation based on Gaussian kernel by introducing smooth parameters that used the mean
integrated square error (MISE) as statistical standards to optimize the smoothing pa-
rameters. Though parameter optimization based on MISE was efficient, the accuracy of
classifiers established still needs to be improved further. Huang [6] compared the NBC
based on Gauss kernel with support vector machine (SVM) and obtained the result that
optimized NBC had higher classifying accuracy than SVM. On the attributes depen-
dency, Guo et al. [7] extended the structure of continuous attributes NBC and improved
its classification accuracy based on likelihood score. Wang et al. [8] set up multi-smooth
parameter of continuous attributes of fully Bayesian classifier using multi Gaussian ker-
nel function to estimate attributes joint density and proposed a parameter optimization
method which combined the classifying accuracy standards and divided different inter-
val entirely searches. It was very important for the Bayesian classifier to estimate the
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attribute density by the Gaussian kernel function. So this paper presented a new pa-
rameter optimization method. This method makes use of MISE to measure the fitting
degree between estimated density and actual density, the optimal parameter can be used
by approximate calculation, and finally the multiple smoothing parameter NBC can be
established.

This paper presented a new Bayesian classifying method based on multi-smoothing pa-
rameters. Firstly, we analyzed Näıve Bayesian classifier based on Gaussian kernel density;
secondly, we introduced smoothing parameter optimization and classifier learning; finally,
we finished the simulation and experiment.

2. Näıve Bayesian Classifier Based on Gaussian Kernel Density. NBC assumes
that all attributes are conditionally independent with each other. According to Bayesian
formula we can obtain (1).

p(c|x1, x2, . . . , xn) = p(c)p(x1, x2, . . . , xn|c)/p(x1, x2, . . . , xn) = αp(c)
n∏

i=1

p(xi|c) (1)

In Formula (1), n is the number of attributes, and α is regularization factor. For continu-
ous attributes NBC, we use Gaussian kernel functions to estimate the attribute marginal
density. In order to make the attribute marginal density fit the actual data better, a
smoothing parameter is introduced, which can control the marginal density as well as
fitting degree in Gaussian kernel. The attribute marginal density can be estimated by
Gaussian kernel functions, just shown as Formula (2).

p(xi|c) =
1

N(c)

N(c)∑
m=1

g(xi; xim, h) =
1

N(c)

N(c)∑
m=1

1√
2πh

exp

[
−(xi − xim)2

2h2

]
(2)

where N(c) is the number of samples which belongs to class c in data set, xi, xim is the ith
attribute and the mth value of attribute i belongs to class c of sample x respectively, and h
is smoothing parameter of classifiers. From Formula (1), we can get the p(x1, x2, . . . , xd|c).
Then we can get the posteriori probability, as shown in Formula (3).

p(c|x1, x2, . . . , xd) =
1

N · (N(c))d−1(2π)d/2

d∏
i=1


N(c)∑
m=1

1

hi

exp

[
−(xi − xim)2

2h2
i

] (3)

where d is the number of attribute, and hi is the smoothing parameter of each attribute.

3. Smoothing Parameter Optimization and Classifier Learning.

3.1. Smoothing parameter optimization. Smoothing parameter can control fitting
degree between attributes density and actual data. Let smoothing parameter be 0, and
kernel function can reflect the distribution of the data well, but the noise in the data
will result in over-fitting. On the contrary, the smoothing parameter is bigger, so the
fitting degree between estimated conditional density and data will become poor, which
may lead to under-fitting. Therefore, it is necessary to optimize smoothing parameter so
as to promote the performance of the classifying.

The different smoothing parameters lead to the different errors between the estimated
density and the actual density, so we need a standard to measure the error. MISE can com-
prehensively estimate the relationship between density and actual density, so we choose
MISE as a standard to estimate. Gaussian kernel functions are used to estimate the sam-
ples distribution, and MISE is a function of smoothing parameters h and the number of
samples.
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Proof: Suppose p(x) is actual probability that is the actual probability density for
the variable, and p̂(x) is estimated density based on Gaussian kernel function. Then the
MISE can be expressed as is shown in Formula (4).

MISE(h) = E

[∫
{p̂(x)− p(x)}2 dx

]
=

∫ {
E[p̂2(x)]− E2[p̂(x)]

}
dx +

∫
{E[p̂(x)]− p(x)}2 dx (4)

For one dimensional Gaussian density variable, the density of x can be expressed as
Formula (5).

p̂(x) =
n∑

i=1

g(x; xi, h) =
1

n

n∑
i=1

1√
2πh

exp

[
−(x− xi)

2

2h2

]
(5)

Let z = x−xi

h
, then∫

g(x; xi, h)dx =

∫
g(z)p(xi)dxi =

∫
g(z)p(x− hz)dz (6)

According to the Taylor’s formula, p(x−hz) can be written as Formula (7). Then we can
get E(p̂(x)), E(p̂2(x)), then incorporate it into Formula (4), we can obtain Formula (8).

p(x− hz) = p(x)− hzp′(x) +
1

2
h2z2p′′(x) + o

(
h2
)

(7)

MISE(h) =
1

nh

∫ {[
1

2
√

π
p(x) +

h2

4
p′′(x)

]
− 1

n

[
p(x) +

1

2
p′′(x)h2

]2
}

dx

+
h2

4

∫
p2′′(x)dx (8)

From Formula (8) we can get 1
n

(
p(x) + 1

2
p′′(x)h2

)2
= o (n−1), so when n→∞, 1

n

(
p(x) +

1
2
p′′(x)h2

)2
= 0, at this time, MISE can be expressed as Formula (9).

MISE(h) =
1

nh

∫ [
1

2
√

π
p(x) +

h2

4
p′′(x)

]
dx +

h2

4

∫
p2′′(x)dx

≈ 1

2nh
√

π
+

h

n

∫
p′′(x)dx +

h2

4

∫
p2′′(x)dx (9)

As the number of samples is far larger than h, h
n

∫
p′′(x)dx ≈ 0 and Formula (9) can be

transformed to Formula (10).

MISE(h) ≈ 1

2nh
√

π
+

h2

4

∫
p2′′(x)dx (10)

Using p̂(x) to replace p(x) we can get p′′(x), as is shown in Formula (11). If we incorporate
Formula (11) into Formula (10), we can get Formula (12).

p′′(x) =
n∑

i=1

g′′(x; xi, h)/nh3 (11)

MISE(h) ≈ 1

nh
C(x) +

h4

4
[B(x)]2
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The proof is completed.
The smaller MISE value is, the smaller deviation between the actual density and the

estimated density is, so h is an optimal smoothing parameter when the MISE is the
smallest. The derivative of Formula (12) is shown as Formula (13).

d(MISE)

dh
=

√
π

16h3

n∑
i=1

n∑
j<i

{[
(xi − xj)

2 − 6h2
]2 − 24h4

}
exp

[
−(xi − xj)

2

4h2

]
− 4hn (13)

Let Formula (13) be equal to 0, and we can get optimal smoothing parameters.

hbest =

(√
π

16n

N∑
i=1

N∑
j<i

{[
(xi − xj)

2 − 6h2
]2 − 24h4

}
exp

[
−(xi − xj)

2

4h2

])1/3

(14)

3.2. Multi-smoothing parameters of the Näıve Bayesian classifier. For given data
set, we can get optimal smoothing parameter for each attribute, further we can get the
best marginal density estimation of attributes. Finally, we can compute the posteri-
ori probability. The algorithm of multi-smoothing parameter Näıve Bayesian classifier
(MSPNBC) is shown as follows.

Input: data set D = (X1, X2, . . . , Xn)
//Xi is the attribute of the sample, ε is the threshold value

Output: Näıve Bayesian classifier
1: for i← 1 : n //Optimized for each property parameter
2: hi0 = 1.06σin

−1/5 //hi0, σi is initial smoothing parameters and variance of Xi

3: hibest = p(ho0)
4: while (|hibest − hi0| > ε)
5: hi0 = hibest, hibest = p(hi0), hibest = (hi0 + hibest)/2
6: endwhile
7: return hibest

8: endfor
9: compute p(c|x1, x2, . . . , xn)
10: return c = arg max(p(x1, x2, . . . , xn|c))

4. Experiments. In our experiment, we used the 20 data sets from UCI and excluded
the incomplete data directly [9,10]. Ten-fold cross-validation is used to estimate the error
rate of classification. We conduct comparison for the Näıve Bayesian classifer based on
the discretization of continuous attributes, the density estimation based on Gaussian
function TAN (GTAN), single-smoothing parameter of Näıve Bayesian classifier (fSNBC)
[5], smoothing parameter Näıve Bayesian classifier on the basis of fSNBC (fMNBC) and
multi-smoothing parameters Näıve Bayesian classifier (MSPNBC) proposed in this paper.
The data sets and the results are presented in Table 1. Here S#, A# and C# are the
number of samples, attributes and classes respectively.

Overall, the error rate of classification in MPNBC reduced 21.8%, 21.8%, 15.6% and
0.55% compared with the other four classifiers respectively, which fully shows that MPNBC
has good classification accuracy. The scatter charts that compared the MPNBC and the
others are shown in Figure 1 of the data in Table 1. The error rate of classification in
MPNBC and fMNBC is lower than fSNBC, because each attribute has its own characteris-
tics and uses multi-smoothing parameters to estimate the marginal density. This method
can utilize more and better local information of sample, while single smoothing parame-
ters estimate the density on the whole and ignore the difference between attributes. The
error rate of MPNBC is lower than fMNBC, primarily because fMNBC is relatively sen-
sitive for smoothing parameters. When the estimation of h has deviation, it will lead to
a large influence on the whole estimation. While MPNBC selected smoothing parameters
for every attribute respectively, the smoothing parameters do not affect each other, so the
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Table 1. Dataset information and compared experiment results

Data Set S#;A#;C# DNBC GTAN fSNBC fMNBC MPNBC
Balance 625;4;3 0.090 0.115 0.083 0.085 0.077

Breast cancer 699;10;2 0.036 0.050 0.024 0.024 0.016
Breast Tissue 106;9;6 0.287 0.310 0.276 0.241 0.199

Ecoli 292;5;4 0.104 0.068 0.072 0.047 0.042
Glass 214;9;6 0.336 0.499 0.321 0.314 0.327

Heart disease 270;13;2 0.135 0.155 0.160 0.149 0.125
Haberman 306;3;2 0.241 0.245 0.255 0.243 0.244

Image 2310;18;7 0.113 0.205 0.187 0.162 0.105
Ionosphere 349;33;2 0.257 0.500 0.372 0.336 0.227

Iris 150;4;3 0.040 0.027 0.036 0.036 0.030
Liver disorder 345;6;2 0.312 0.411 0.356 0.332 0.332

Pima 768;8;2 0.237 0.244 0.260 0.234 0.212
Sonar 208;60;2 0.322 0.298 0.269 0.251 0.246

Spambase 4601;57;2 0.165 0.166 0.228 0.196 0.172
Vehicle 846;19;4 0.433 0.257 0.297 0.265 0.241
Wine 178;12;3 0.142 0.017 0.023 0.019 0.016
Wpbc 198;34;2 0.417 0.177 0.179 0.167 0.158

Waveform 5000;21;3 0.215 0.176 0.193 0.156 0.136
Wdpc 569;31;2 0.047 0.059 0.058 0.055 0.049
Yeast 1484;6;4 0.455 0.273 0.332 0.311 0.283

(a) MPNBC and DNBC (b) MPNBC and GTAN

(c) MPNBC and fSNBC (d) MPNBC and fMNBC

Figure 1. The scatter chart of the classifier error rate
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classifier is more stable and has better performance. On most data sets, the classification
accuracy of MPNBC is higher than DNBC, but on the data sets haberman, Liver disorder,
Spambase, and Wdpc, the classification accuracy of MPNBC is lower than DNBC, so it
can be seen that DNBC is more applicable to the data set with more attributes.

5. Conclusion. In this paper, we propose an optimal smoothing parameter algorithm,
and apply this algorithm to estimating the density of continuous attributes, and then
construct the multi-smoothing parameter NBC. The experimental results demonstrate
lower error rate of classification in MPNBC. However, the selection of ε in different data
sets is various, how to select the reasonable threshold value need further research. The
MPNBC can not effectively use the information among the attributes, so the extension
of NBC based on Gaussian kernel function needs further research.
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