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Abstract. In this paper, constrained inverse control based on least squares support
vector machines (LS-SVM) is proposed for the general unknown nonlinear systems. The
proposed control method includes three parts which are LS-SVM, inverse controller and
dynamic anti-windup compensator. In this control design, LS-SVM is used to obtain
the Jacobian information of the unknown nonlinear system and the inverse controller is
designed to control the dynamic system. At the same time, in order to solve the control
input saturation of the dynamic nonlinear system, a dynamic anti-windup compensator
is proposed for accommodating the reference. Due to the proposed scheme, the output
tracking ability of the closed-loop control system can be guaranteed in spite of constrained
unknown nonlinear process. Finally, the simulation results for a solid oxide fuel cell
(SOFC) are provided to demonstrate the effectiveness of the proposed constrained control
approach.
Keywords: LS-SVM, Nonlinear system, Dynamic anti-windup, Constrained inverse
control

1. Introduction. In industry environment, many systems are dynamic nonlinear pro-
cesses in fact. The classical control methods based on linear systems are unstable and
insufficient for nonlinear systems [1,2]. So alternate nonlinear control algorithms need
to be found for good performance index and satisfactory stability. Neural network (NN)
control based on adaptive or predictive techniques is a commonly used method in the last
three decades [3,4]. However, there are some shortages of NN control, such as slow conver-
gence speed and the overfitting phenomenon [5]. In recent years, SVM and LS-SVM based
on statistical learning theory (SLT) are the new machine learning methods for nonlinear
systems [6]. SVM and LS-SVM are all based on minimizing the structural risk principle.
Compared with SVM, LS-SVM has the fast training speed, the simple calculation and
the less uncertain training results, so LS-SVM is more suitable for computation of on-line
implementation in nonlinear systems [7]. Moreover, compared with the classical NNs, the
generalization ability of LS-SVM is more likely to be accepted by people [8].

Though, the method of LS-SVM has been widely used in many nonlinear systems, few
methods of LS-SVM consider the actuator saturation problem. If the actuator saturation
factor is not considered, controllers may appear saturated and unstable. So researchers
have paid close attention to dynamical systems subject to input saturation. In linear
systems, a general method to solve this problem of saturation is to treat the system as
the sector nonlinearity [9]. The linear differential inclusion approach is another effective
way for solving this problem, and this strategy puts the saturated linear feedback inside
the convex hull of the set in auxiliary linear feedbacks [10]. However, in nonlinear systems,
there is no general effective method to deal with the saturation problem due to complex
dynamic characteristics of the nonlinear systems. In [11], a new method of anti-windup
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compensator for nonlinear systems was proposed in the condition that people must find
the equivalent functions to replace the original unknown nonlinear function. However, in
practice, it is very difficult to realize.

In this paper, LS-SVM based constrained inverse control is proposed for the general
unknown nonlinear systems. This method utilizes Jacobian information via LS-SVM to
build saturation compensator. An application of the proposed controller design for SOFC
demonstrates the effectiveness of this algorithm. The rest of this paper is organized as
follows. The description of LS-SVM is given in Section 2. In Section 3, an LS-SVM based
constrained inverse controller is designed. In Section 4, simulation results for SOFC are
presented to show the effectiveness of the proposed method. Finally, some conclusions
are made at the end of this paper.

2. LS-SVM Description. LS-SVM is an effective method which makes the input data
into the high dimensional feature space to predict the time series data. Moreover, it can
create a linear regression function for the system [12]. LS-SVM can reduce the complexity
of the calculation and improve the training speed. Due to these advantages, LS-SVM is
widely used in many fields.

Firstly, we define the training samples (x κ, yκ)
N
κ=1, κ = 1, 2, 3, . . . , N , where x κ is the

sample input vector, yκ is the corresponding target, and N is the number of samples.
Then, the support vector regressive function can be described as follows

f(x ) = WT φ(x ) + γ (1)

where φ(x ) is a nonlinear function which maps the input data into higher dimensional
feature space. W and γ are weight vector and bias, respectively.

According to the model of LS-SVM, the performance index function of this constraint
optimization problem is written as follows

J =
1

2
||W ||2 +

C

2

N∑
κ=1

ζκ (2)

And the constraint condition is defined as

yκ = WT φ(x κ) + γ + ζκ (3)

where C is the regularization parameter and ζκ is the relaxation factor of nonsensitive
loss function. Then, we define the Lagrange function which can be described as

L = J −
N∑

κ=1

ακ

[
WT φ(x κ) + γ + ζκ − yκ

]
(4)

where ακ denotes the Lagrange multiplier of the function. Based on the Karush-Kuhn-
Tucker (KKT) conditions, we can get some functions from Equation (4) as follows

W =
N∑

κ=1

ακφ(x κ)

N∑
κ=1

ακ = 0

ακ = Cζκ

yκ = WT φ(x κ) + γ + ζκ

(5)

According to Equation (5), we can obtain the equivalent linear system function which
can be described as [

0 I T

I Ω + C−1I

][
γ

a

]
=

[
0

y

]
(6)
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where I =[I1, I2, . . . , IN ]T , a =[α1, α2, . . . , αN ]T , y =[y1, y2, . . . , yN ]T and Ω=Q(x i,x j) =
φ(x i)

T φ(x j), i, j = 1, 2, . . . , N . Here, we can select the Gaussian function Q(x κ,x ) which
is defined as

Q(x κ,x ) = exp

(
−∥x − x κ∥2

2τ 2
κ

)
, κ = 1, 2, . . . , N (7)

where τκ denotes the basis width parameter. So the nonlinear regression function can be
written as follows

f(x ) =
N∑

κ=1

ακQ(x κ,x ) + γ (8)

3. LS-SVM Based Constrained Inverse Controller Design. In this section, we
propose constrained inverse control based on LS-SVM. For the convenient computing, we
make our research contents only to single-input-single-output (SISO) nonlinear systems.
The extension of the proposed algorithm to multi-input-multi-output (MIMO) systems
is very easy, so we will not discuss the method of MIMO systems here. The model of
classical SISO nonlinear systems can be described as

y(k + 1) = F [y(k), . . . , y(k − n + 1), u(k), . . . , u(k − m + 1), d(k)] (9)

where k denotes the discrete time. y(k), u(k) and d(k) are the controlled output, the con-
trol input and the disturbance, respectively. F (·) is the general function of the nonlinear
systems, and n and m represent process orders.

In the process of actual control, the control input u(k) is not infinitely great or infinitely
little. Besides that, it also cannot change too fast in a small interval due to the inertia.
So the control input u(k) is subject to magnitude and rate constraints as follows

umin(k) ≤ u(k) ≤ umax(k)

∆umin(k) ≤ ∆u(k) ≤ ∆umax(k)
(10)

where ∆u(k) denotes the increment of control input u(k).
Define x = [Y (k), u(k), U(k − 1), d(k)], where Y (k) = [y(k), . . . , y(k − n + 1)] and

U(k − 1) = [u(k − 1), . . . , u(k − m + 1)] are the set of the past outputs and the set of
the past control inputs, respectively. Using LS-SVM to identify the dynamic model of
Equation (9), we can obtain the following LS-SVM identification as follows

ym(k + 1) = F̂ (x ) =
N∑

κ=1

ακQ(x κ,x ) + γ (11)

Define the new tracking error e(k) = y∗(k) − y(k) − ξ(k). Since the dynamic con-
straints exist in the close-loop control system, an anti-windup compensator is designed
to accommodate the reference trajectory y∗(k) where y(k) denotes output of the system.
The compensation signal ξ(k) is presented as the following

ξ(k) = ρξ(k − 1) +
∂ym(k + 1)

∂u(k)
(uc(k) − u(k)) (12)

where ρ < 1. The algorithm of the inverse control law commonly known in the literature
is as follows

uc(k) = u(k − 1) +

µ∂ym(k+1)
∂u(k)

λ +
(

∂ym(k+1)
∂u(k)

)2 e(k) (13)

where µ is a modification item. λ is a positive control effort weighting factor. Based on the

above calculation, Jacobian information ∂ym(k+1)
∂u(k)

(sensitivity of plant output to controlled
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input) algorithm is as follows

∂ym(k + 1)

∂u(k)
=

∂F̂ (x )

∂u(k)
=

N∑
κ=1

ακQ(x κ,x )
∂x

∂u(k)
· x κ − x

τ 2
κ

(14)

Based on the input constraints (10), the LS-SVM based constrained inverse controller
is described as

u(t) = Sat {(u(k − 1) + Sat {(uc(k) − u(k − 1)) , T∆umin, T∆umax}) , umin, umax} (15)

where T is sampling time, and Sat(·) function is defined as

Sat(a, b, c) =


b a ≤ b

a b < a < c

c a ≥ c

4. Simulation Results. In this section, the proposed LS-SVM based constrained inverse
control algorithm discussed above is applied to achieve safe fuel utilization and satisfy the
operating constraints when the current load and voltage output are measurable online for
SOFC. Its structure is shown in Figure 1.

Inverse Controller
Solid Oxide

Fuel Cell

Anti-windup

Compensator

LS-SVM

-

-

-

-x

Constraint

Figure 1. Structure of LS-SVM based constrained inverse controller

Figure 2. SOFC system dynamic model
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In this paper, take the SOFC dynamical model widely accepted as the object of study
[13,14], which is shown in Figure 2, where Vdc is the stack output voltage (V), qf is the
natural gas (e.g., H2) flow rate (mol/s), and I expresses the measurable external current
load (A); pH2 , pO2 , and pH2O denote the partial pressures of hydrogen, oxygen, and water
(Pa), respectively. qin

H2
and qin

O2
are the input flow rates of hydrogen and oxygen (mol/s),

respectively. Applying Nernst’s equation and taking into account ohmic, concentration,
activation losses (i.e., ηohmic, ηconc, and ηact), the stack output voltage Vdc is described as
follows [15,16],

Vdc = V0 − ηohmic − ηconc − ηact (16)

where

V0 = N0

[
E0 +

R0T0

2F0

ln
pH2

√
pO2/101, 325

pH2O

]
(17)

pH2 =
1

KH2(1 + τH2s)

(
1

1 + τfs
qf − 2KrI

)
(18)

pO2 =
1

KO2(1 + τO2s)

(
1/τH−O

(1 + τfs)
qf − KrI

)
(19)

pH2O =
2

KH2O(1 + τH2Os)
KrI (20)

ηohmic = Ir, ηconc = ∂ + β ln I, ηact = −R0T0

2F0

ln I

(
1 − I

IL

)
(21)

The parameters of the SOFC model are summarized in Table 1 [16].
qf , Vdc and I are redefined as the control input u, control objective y and disturbance

d, respectively. The input-output relation of SOFC can be rewritten in the following
unknown one-order nonlinear autoregressive with exogenous input (NARX) model:

y(k + 1) = F (y(k), u(k), d(k)) (22)

Table 1. Parameters in the SOFC system model

Parameter Value Unit Representation
T0 1273 K Absolute temperature
F0 96,485 C/mol Faraday’s constant
R0 8.314 J/(mol K) Universal gas constant
E0 1.18 V Ideal standard potential
N0 384 – Number of cells in series in the stack
Kr 0.996 × 10−3 mol/(s A) Constant, Kr = N0/4F0

KH2 8.32 × 10−6 mol/(s Pa) Valve molar constant for hydrogen
KH2O 2.77 × 10−6 mol/(s Pa) Valve molar constant for water
KO2 2.49 × 10−5 mol/(s Pa) Valve molar constant for oxygen
τH2 26.1 s Response time of hydrogen flow
τH2O 78.3 s Response time of water flow
τO2 2.91 s Response time of oxygen flow

τH−O 1.145 – Ratio of hydrogen to oxygen
r 0.126 Ω Ohmic loss
τf 5 s Time constant of the fuel processor
∂ 0.05 – Tafel constant
β 0.11 – Tafel slope
IL 800 A Limiting current density
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As an independent power source candidate, we must ensure that output voltage of the
SOFC system is expected to be at a desired constant value. The external current load I
directly affects the output voltage of the SOFC system. In normal working conditions,
the current load I of the SOFC system is 300 A. The steady output of the voltage is 332.8
V. The safe fuel utilization ρ satisfies [ρmin, ρmax] = [0.7, 0.9], and maintains operational
constraints are considered as [qf min, qf max] = [0, 1.2] mol/s and [q̇f min, q̇f max] = [−0.7, 0.7]
mol/s2, respectively.

For the simulations, the modification item µ and the positive control effort weighting
factor λ are selected as 1.7 and 2, respectively. Open-loop input-output data samples are
obtained by exciting the open-loop SOFC system using designed sine signals 0.7823 +
0.3 sin(0.5t) sin t and 300 + 50 sin(0.03t) sin(0.04t) for the fuel and the current demand
(i.e., qf and I), respectively. For comparing the performance, the initial values of PID
control parameters are kp(0) = 0.0312, ki(0) = 0.000903 and kd(0) = 0.

In simulations, LS-SVM identification curves of SOFC are shown in Figure 3. From
Figure 3, we observe that the test error is very small compared with the output value, so
it demonstrates that LS-SVM can approximate the behavior of the SOFC system with
good accuracy. Assuming that current load I changes as Figure 4 and a typical system
response using the proposed algorithm is depicted in Figure 4, in which we can see that
the tracking error is faster to a small neighborhood of zero than PID control, where PID
controller parameters are kp = 0.0312, ki = 0.000903. Moreover, we find that the SOFC
control system achieves desired utilization and satisfies the operating constraints when we
adopt the proposed algorithm. At the same time, the typical PID control method cannot
obtain the satisfactory utilization.
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Figure 3. LS-SVM identification curves of SOFC

5. Conclusions. In this paper, the LS-SVM based constrained inverse control is pro-
posed for a class of unknown nonlinear systems, which provides an effective alternative to
the nonlinear processes. A dynamic constraints unit with anti-windup scheme is adopted
to control input within an effective and safe range as long as possible. It is worth mention-
ing that this proposed control approach of SOFC is particularly useful while the explicit
analytical model of SOFC is difficult to obtain. The simulation results have validated
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Figure 4. SOFC response curves

the proposed LS-SVM based constrained nonlinear control algorithm. In future, research
topic is to introduce the instrumental variable method to further counteract the effect of
noise. Furthermore, we will introduce adaptive technology into the proposed algorithm
of this paper.
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