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Abstract. In this paper, we analyze some problems existing in rule premise reduction
of multidimensional fuzzy inference, and propose a new premise reduction method based
on hierarchical variable weights in factor space theory, which not only shows relative
importance of antecedent components in fuzzy inference, but considers different preference
requirements of decision makers. In addition, it is proved that the reduction of rule
premises does not change the interpolation approximation of the fuzzy systems constructed
by the improved CRI (Compositional Rule of Inference). An illustrative example shows
that the proposed premise reduction method is practicable and effective.
Keywords: Fuzzy inference, Factor space, Hierarchical variable weights, CRI, Fuzzy
systems

1. Introduction. The structure of a fuzzy control system includes three parts, i.e., fuzzi-
fication, fuzzy inference and defuzzification, and the design of a fuzzy inference engine is
one of the most critical parts. In 1973, Zadeh proposed CRI [1] such that the research of
fuzzy inference and fuzzy systems develops rapidly. Mamdani used the CRI to fuzzy con-
trol and obtained successful application [2]. Furthermore, Buckley et al. [3-17] discussed
the mechanism of fuzzy control systems and found some significant conclusions. Particu-
larly, Li proved that a fuzzy control system is an interpolation function in mathematical
essence [11], and proposed variable universe adaptive fuzzy control theory [12]. Based on
the idea, an efficient fuzzy controller was designed, which was successfully applied to the
quadruple inverted pendulum [13]. Obviously, the application of the fuzzy control theory
based on CRI has achieved remarkable success in practice for the past few decades. How-
ever, the logical foundation and some details of fuzzy systems constructed by CRI are
worthy to be further studied [14-19]. In particular, this paper will focus on the premise
reduction of multidimensional fuzzy systems based on multiple premise CRI.

2. Problem Description. In multiple premise CRI, the general reasoning mode is as
follows.

Known A11 and A12 and · · · and A1m −→ B1

· · · · · ·
An1 and An2 and · · · and Anm −→ Bn

given A∗
1 and A∗

2 and · · · and A∗
m

To solve B∗, (1)

where Aij, A∗
j ∈ F(Xj), Bi, B∗ ∈ F(Y ) (i = 1, · · · , n; j = 1, · · · ,m). The solution

procedure of (1) can be divided into three parts.
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(P.1) Multiple premises need to be reduced to single premise in every rule by some
reduction method. For example, taking

Ai = Ai1 × Ai2 × · · · × Aim (i = 1, · · · , n), (2)

accordingly we have A∗ = A∗
1 × A∗

2 × · · · × A∗
m. Then (1) can be reduced to the following

form:

Known A1 −→ B1

· · · · · ·
An −→ Bn

given A∗

To solve B∗. (3)

The procedure is called Premise Reduction.
(P.2) n fuzzy rules in (3) need to be reduced into one rule A −→ B. Generally, the

operator “∪” is used, and furthermore (3) is shown as follows:

Known A −→ B

given A∗

To solve B∗. (4)

The procedure is called Rule Reduction.
(P.3) Solving (4) is called FMP (Fuzzy Modus Ponens).
It is necessary to point out that in (P.1), Ai = Ai1×Ai2×· · ·×Aim ∈ F(X1×X2 · · ·×Xm)

(i = 1, · · · , n), and for ∀x , (x1, x2, · · · , xm) ∈ X , X1 × X2 · · · × Xm, we can take
Ai(x) = ∧m

j=1Aij(xj), and we can also use other triangular norms to replace ∧. In [14],
Wang indicated that this method might lose m − 1 pieces of information in m pieces of
information obtained by m data. Therefore, vector-valued fuzzy sets can be adopted to
overcome the limitation, and we take

Ai(x) = (Ai1(x1), Ai2(x2), · · · , Aim(xm)). (5)

(5) is a vector that does not loss any information. However, the fuzzy inference based
on vector-valued fuzzy sets is more complicated than the one based on real-valued fuzzy
sets, and more difficult to deal with.

In fact, the value of Ai(x) is obtained by comparison with the m values of rule antecedent
components. We do not think that the m − 1 pieces of information are lost. In addition,
the premise reduction by ∧ has been widely applied to practice, and it is easy to deal
with in application. So we cannot negate it.

Wang and Li introduced a new theory named Factor Space Theory in [15]. They pro-
posed that the state space X(f) of multidimensional factor f can be obtained by syn-
thesizing states of single factors into states of complex factors based on variable weighted
synthesis functions. In fact, the operator “∧” is just a standard synthesis function.

On the basis of factor space theory, the aggregation procedure of antecedent compo-
nents in fuzzy rules can be regarded as synthesis of multiple factors. So we put forward
a premise reduction method based on weighted-balanced synthesis [16]. The method not
only shows relative importance of every antecedent components in reasoning, but consid-
ers the balance influence of state combination. However, some defects still exist in this
method. The method only reflects aggregation requirement of decision makers, which
means the requirement of balancing states among antecedent components, but it does not
include all the possible preferences of decision makers. In an actual inference problem,
some antecedent components need to be encouraged; in other words, their weights should
be enlarged when the input state values increase. On the other hand, when we consider
these antecedent components separately, their state values need to be balanced, that is,
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their variable weights should be reduced when the input state values increase. Hierarchi-
cal variable weights in multifactor decision making was proposed in [20], which can solve
the above problem, and some scholars applied the idea of hierarchical variable weights to
practical models [21,22]. Therefore, based on hierarchical variable weights, a new premise
reduction method of multidimensional fuzzy inference is given in this paper.

The paper is organized as follows. In Section 3, we propose the idea of hierarchical
variable weights, and further we give an improved premise reduction method of mul-
tidimensional fuzzy inference. In Section 4, we discuss the interpolation approximation
property of the fuzzy systems constructed by the improved CRI. An example is given
to show the effectiveness of the new premise reduction method in Section 5, followed by
conclusion in Section 6.

3. Fuzzy Inference Based on Hierarchical Variable Weights.

3.1. Hierarchical variable weights. Let A1, A2, · · · , Am be m antecedent components
in fuzzy inference. The constant weight vector and the state vector are denoted by
ω = (ω1, ω2, · · · , ωm) and X = (x1, x2, · · · , xm) respectively. According to practical re-
quirements, we divide A1, A2, · · · , Am into p groups, and there are not the same compo-
nents among the groups. Suppose that there are qj antecedent components denoted by
Aj1 , Aj2 , · · · , Ajqj

in the jth group. We integrate them into a new antecedent component

Aj. Obviously, A1, A2, · · · , Ap are independent of each other. The state value x̄j of Aj is
the variable weighted synthetic value of Aj1 , Aj2 , · · · , Ajqj

. The state vector and constant

vector of Aj1 , Aj2 , · · · , Ajqj
are denoted by

(
xj1 , xj2 , · · · , xjqj

)
and

(
ω0

j1
, ω0

j2
, · · · , ω0

jqj

)
respectively. Then the state variable weight vector is generated as follows.

Sj

(
xj1 , xj2 , · · · , xjqj

)
=

(
Sj1

(
xj1 , xj2 , · · · , xjqj

)
, · · · , Sjqj

(
xj1 , xj2 , · · · , xjqj

))
.

We use the idea of variable weighted synthesis [15] and obtain x̄j =
qj∑

i=1

ωji

(
xj1 , xj2 , · · · ,

xjqj

)
xji

, where

ωji

(
xj1 , xj2 , · · · , xjqj

)
=

ω0
ji
Sji

(
xj1 , xj2 , · · · , xjqj

)
qj∑

k=1

ω0
jk

Sjk

(
xj1 , xj2 , · · · , xjqj

) .

Finally, we discuss the comprehensive value Mp(x̄1, x̄2, · · · , x̄p) of antecedent compo-
nents. The specific construction process is as follows. Let

(
ω̄0

1, ω̄
0
2, · · · , ω̄0

p

)
be the constant

weight vector of A1, A2, · · · , Ap. The state variable weight vector of A1, A2, · · · , Ap is de-
noted by S̄(x̄1, x̄2, · · · , x̄p) =

(
S̄1(x̄1, x̄2, · · · , x̄p), · · · , S̄p(x̄1, x̄2, · · · , x̄p)

)
. Then we have

Mp(x̄1, x̄2, · · · , x̄p) =
p∑

j=1

ω̄j(x̄1, x̄2, · · · , x̄p)x̄j, in which the variable weight ω̄j(x̄1, x̄2, · · · ,

x̄p) is constructed in the following,

ω̄j(x̄1, x̄2, · · · , x̄p) =
ω̄0

j S̄j(x̄1, x̄2, · · · , x̄p)
p∑

i=1

ω̄0
i S̄i(x̄1, x̄2, · · · , x̄p)

.

Remark 3.1. According to different inference problems, A1, A2, · · · , Ap can be further
grouped and the construction method is similar to above.



2152 Y. ZHANG

3.2. Fuzzy inference procedure based on hierarchical variable weights. As men-
tioned above, fuzzy inference can be divided into three parts, i.e., premise reduction, rule
reduction and solving of FMP problem. We introduce three steps of fuzzy inference based
on hierarchical variable weights.

(P.1′) Premise reduction. According to the hierarchical variable weights, the m
antecedent components are synthesized, that is,

Ai(x) , Ai(x1, x2, · · · , xm) = Mp(x̄1, x̄2, · · · , x̄p).

(P.2′) Rule reduction. The n rules are aggregated into R =
n∪

i=1

Ri, i.e.,

R(x, y) =
n∨

i=1

Ri(x, y) =
n∨

i=1

θ(Ai(x), Bi(y)),

where θ is a fuzzy implication operator.

Remark 3.2. The operation
∪

can be replaced by other operations as
∑

. In [23],
∑

is
revised as bounded sum ⊕.

(P.3′) Solving (4). We use CRI method given by Zadeh and then get B∗ = A∗ ∧ R,
i.e.,

B∗(y) =
∨
x∈X

(A∗(x) ∧ R(x, y)).

4. Interpolation Approximation of the Fuzzy Systems Constructed by the
Fuzzy Inference Based on Hierarchical Variable Weights. We discuss whether
the fuzzy systems based on hierarchical variable weights have interpolation property or
not from the point of view of function approximation.

Firstly, it is necessary to know several signs. Let X1, X2, · · · , Xm be m input universes,
and Y is an output universe. A1 = {Ai11 | 1 ≤ i1 ≤ n1}, A2 = {Ai22 | 1 ≤ i2 ≤ n2},
· · · , Am = {Aimm | 1 ≤ im ≤ nm}, and B = {Bi1i2···im | 1 ≤ ij ≤ nj, j = 1, 2, · · · ,m}
are the fuzzy partitions to X1, X2, · · · , Xm, Y , respectively. For convenience, We suppose
X1, X2, · · · , Xm, Y are all [0, 1], and xijj, yi1i2···im are the peak points of Aijj, Bi1i2···im
(1 ≤ ij ≤ nj, j = 1, 2, · · · ,m) respectively, where

0 ≤ x11 < · · · < xn11 ≤ 1, · · · , 0 ≤ x1m < · · · < xnmm ≤ 1, 0 ≤ y1 < · · · < yn1n2···nm ≤ 1.

A1, · · · ,Am,B can be regarded as linguistic variables. Then n1n2 · · ·nm fuzzy rules are
generated as follows:

If x1 is Ai11 and x2 is Ai22 and · · · and xm is Aimm then y is Bi1i2···im .

For a given x∗ , (x∗
1, x

∗
2, · · · , x∗

m) ∈ X1 ×X2 × · · · ×Xm, we use singleton fuzzification,
i.e.,

A∗(x) =

{
1, x = x∗,
0, x ̸= x∗.

Theorem 4.1. On the basis of above-mentioned assumption, there exists a group of base
elements Φ = {ϕi1i2···im | 1 ≤ i1 ≤ n1, · · · , 1 ≤ im ≤ nm} such that the fuzzy systems
with m inputs and single output based on hierarchical variable weights can be expressed as
some piecewise interpolation functions that take ϕi1i2···im as their base functions, that is,

f(x1, x2, · · · , xm) =

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑

im=1

ϕi1i2···im(x1, x2, · · · , xm)yi1i2···im . (6)
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Proof: According to the interpolation mechanism of fuzzy systems in [11], for the given
(x∗

1, x
∗
2 · · · , x∗

m) ∈ X1 × X2 × · · · × Xm, the output of the fuzzy systems should be

y∗ = f(x∗
1, x

∗
2, · · · , x∗

m) =

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑

im=1

yi1i2···imMp

(
x̄∗

1, x̄
∗
2, · · · , x̄∗

p

)
n1∑

i1=1

n2∑
i2=1

· · ·
nm∑

im=1

Mp

(
x̄∗

1, x̄
∗
2, · · · , x̄∗

p

) .

Let
αi1i2···im(x∗

1, x
∗
2, · · · , x∗

m) = Mp

(
x̄∗

1, x̄
∗
2, · · · , x̄∗

p

)
,

βi1i2···im(x∗
1, x

∗
2, · · · , x∗

m) =
1

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑

im=1

αi1i2···im(x∗
1, x

∗
2, · · · , x∗

m)
,

ϕi1i2···im(x∗
1, x

∗
2, · · · , x∗

m) = βi1i2···im(x∗
1, x

∗
2, · · · , x∗

m) · αi1i2···im(x∗
1, x

∗
2, · · · , x∗

m).

When x∗
1 = xi11, x

∗
2 = xi22, · · · , x∗

m = ximm, then Ai11(xi11) = Ai22(xi22) = · · · =
Aimm(ximm) = 1, Ak11(xi11) = Ak22(xi22) = · · · = Akmm(ximm) = 0 (k ̸= i).

Consequently,

y∗ =
yi1i2···imMp

(
x̄∗

1, x̄
∗
2, · · · , x̄∗

p

)
Mp

(
x̄∗

1, x̄
∗
2, · · · , x̄∗

p

) = yi1i2···im .

If we put

f(x1, x2, · · · , xm) ,
n1∑

i1=1

n2∑
i2=1

· · ·
nm∑

im=1

ϕi1i2···im(x1, x2, · · · , xm)yi1i2···im ,

then (6) is obtained.

Remark 4.1. From Theorem 4.1, aggregation of antecedent components by hierarchical
variable weights does not change the interpolation approximation of the fuzzy systems
constructed by CRI.

5. Instance Analysis. The prediction of time series is an important practical issue,
which can be applied to many fields such as economics, control, and signal processing.
We use the above idea to construct a multidimensional fuzzy system to predict Mackey-
Glass chaotic time series generated by the differential equation with time delay

dx(t)

dt
=

0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t). (7)

When τ > 17, (7) shows a chaotic action. Take τ = 30 (see Figure 1).
The prediction of time series utilizes known time series data at moment t to predict

the value at a future moment t + P . In general, a mapping from q sampling points
(x(t − (q − 1)I), · · · , x(t − I), x(t)) to x(t + P ) is constructed, where I is a time interval
unit. We choose q = 4, I = P = 6. Then for every moment t, the input of the fuzzy
system is a 4-dimensional vector X(t) = (x(t − 18), x(t − 12), x(t − 6), x(t)), and the
output is the predicted value y(t) = x(t+6). Accordingly, we generate 1000 input-output
data as the integer moment t varies from 118 to 1117. The first 500 data are used to
generate fuzzy rules and a multidimensional fuzzy system is constructed on the basis of
hierarchical variable weights. The rest 500 data are used to test the approximation effect
of the improved fuzzy system.

We use the triangular membership functions for rule antecedents as follows:

A1(x) =


x − x2

x1 − x2

, x1 ≤ x ≤ x2,

0, otherwise,
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Ai(x) =


x − xi−1

xi − xi−1

, xi−1 ≤ x ≤ xi,

x − xi+1

xi − xi+1

, xi ≤ x ≤ xi+1, (i = 2, · · · ,m − 1)

0, otherwise,

Am(x) =


x − xm−1

xm − xm−1

, xm−1 ≤ x ≤ xm,

0, otherwise,

where xi is the peak point of fuzzy set Ai (1 ≤ i ≤ m).

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1. Mackey-Glass chaotic time series

It should be noted that there are four input variables in this experiment. For conve-
nience, we can aggregate the four fuzzy inputs by using Ai(x) =

∑4
k=1 0.25Aik(xik) in

accordance with hierarchical variable weights.
Figure 2 gives the mean square errors (MSE) produced by the improved system based

on hierarchical variable weights and the traditional Mamdani fuzzy system approximating
a part of Mackey-Glass chaotic time series with varying numbers of fuzzy rules. It shows
that the approximation degree of the two systems is improved as the numbers of fuzzy
rules increase. Nevertheless, for the same number of fuzzy rules, the approximation degree
of the improved fuzzy system is better than that of the traditional Mamdani inference
system.

6. Conclusion. Through analyzing aggregation problem of antecedent components ex-
isting in multidimensional fuzzy inference, we reduced these antecedent components by
hierarchical variable weights in factor space theory. This reduction method not only shows
the relative importance of every antecedent component in fuzzy inference, but also con-
siders the preference requirements of decision makers. In addition, the fuzzy systems
constructed by improved fuzzy reasoning procedure still have the interpolation property
in function approximation. An example was given to illustrate the effectiveness of the
new idea. Therefore, the proposed method has theoretical and practical significance. In
view of approximation properties of fuzzy systems to unknown functions, to study the
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Figure 2. Comparison between mean square errors of the two fuzzy systems

approximation accuracy of the fuzzy systems based on hierarchical variable weights will
be our next work in future.
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