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Abstract. In this paper, an adaptive fuzzy control scheme is proposed for a class of
multiple input and multiple output (MIMO) nonlinear systems with unmodeled dynamics.
To solve the difficulties from the unmodeled dynamics, a dynamic signal is introduced.
Fuzzy systems are used to approximate the packaged unknown nonlinearities, and an
adaptive fuzzy control approach is developed via backstepping, which guarantees that all
the signals in the closed-loop system are semi-globally uniformly ultimately bounded. Sim-
ulation results are used to show the effectiveness of the proposed control scheme.
Keywords: Adaptive fuzzy control, MIMO nonlinear systems, Unmodeled dynamics

1. Introduction. During the past several decades, a large number of research results
[1-6] have been obtained on adaptive backstepping control of multiple input and multiple
output (MIMO) nonlinear systems which extensively existed in the practical engineering.
For example, in [1], a robust stabilization control approach is proposed for a class of
MIMO nonlinear systems via backstepping. Further, Chen et al. [2] consider the problem
of adaptive backstepping tracking control of strict-feedback MIMO nonlinear systems with
input constraints. Alternatively, by using universal approximators, such as fuzzy systems
and radial basis functions neural networks, together with adaptive backstepping technique,
many approximation-based adaptive backstepping control schemes [3, 4] are developed for
nonlinear systems with unknown functions. It is well known that unmodeled dynamics
frequently exist in practical systems and are often a source of instability of the control
systems. Therefore, in the controller design process, the effect of unmodeled dynamics to
the control systems could not be ignored, and there exist many significant results which
have been reported in [5, 6] and the references therein.

Motivated by the above observations, in this paper, an adaptive fuzzy control approach
is proposed for a class of MIMO nonlinear systems with unmodeled dynamics. During
the controller design, fuzzy systems are introduced to approximate the packaged unknown
nonlinearities. Then, an adaptive fuzzy control scheme is derived via backstepping, which
can guarantee the semi-global boundedness of resulting closed-loop systems. The main
advantage of this research is that only one adaptive law is required to be updated online
for each subsystem. Finally, a numerical example is provided to illustrate the effectiveness
of the presented approach.

2. Problem Formulation and Preliminaries. In this paper, we consider a class of
MIMO nonlinear systems. Its ith (i = 1, 2, . . . , N) subsystem is

żi = qi(zi, xi),

ẋij = gij

(
x ij

)
xij+1 + fij

(
x ij

)
+ ∆ij

(
x ij, zi, t

)
, i=1, 2, . . . , N ; j =1, . . . , ni − 1,

ẋini
= gini

(
x ini

)
ui + fini

(
x ij

)
+ ∆ini

(
x ini

, zi, t
)
,

yi = xi1,

(1)
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where xi = [xi1, xi2, . . . , xini
]T ∈ Rni , yi ∈ R and ui are the state vector, the scalar output

and control input of the ith nonlinear subsystem, respectively; x ij = [xi1, xi2, . . . , xij]
T ∈

Rj. zi ∈ Rni0 in (1) denotes the unmeasured portion of the state. The zi-dynamics in (1)
is the unmodeled dynamics, ∆ij(·) is an uncertain dynamic disturbance, fij(.) and gij(.)
are unknown smooth nonlinear functions with fij(0) = 0. It is supposed that ∆ij(·) and
qi(·) in (1) are uncertain Lipschitz continuous functions.

The objective of this paper is to design an adaptive fuzzy control scheme such that all
the signals in the closed-loop system are semi-globally uniformly ultimately bounded.

Assumption 2.1. [5] For the dynamic disturbances ∆ij in (1), there exist unknown non-
negative smooth functions ϕij1(·) and ϕij2(·), such that

|∆ij| ≤ ϕij1

(∣∣x ij

∣∣)+ ϕij2(|zi|). (2)

Assumption 2.2. [5] The unmodeled dynamics in (1) is exponentially input-to-state prac-
tically stable (exp-ISpS); i.e., for the system żi = qi(zi, xi), there exists an exp-ISpS Lya-
punov function Vi(zi) such that

αi1(|zi|) ≤ Vi(zi) ≤ αi2(|zi|), (3)

∂Vi(zi)

∂zi

qi(zi, xi) ≤ −ciVi(zi) + µi(|xi1|) + di, (4)

where αi1, αi2 and µi are of class K∞-functions, ci and di are known positive constants.

Assumption 2.3. [8] For 1 ≤ j ≤ ni, the signs of gij

(
x ij

)
are known, and there exist

unknown positive constants b and bM such that

0 < b ≤
∣∣gij

(
x ij

)∣∣ ≤ bM < ∞, ∀x̄ij ∈ Rni . (5)

Lemma 2.1. [7] Let f(x) be a continuous function defined on a compact set Ω. Then for
any given constant ε>0, there exists a fuzzy logic system W T S(x) such that supx∈Ω

∣∣f(x)−
W T S(x)

∣∣ ≤ ε, where W = [w1, w2, . . . , wN ]T is the ideal constant weight vector, S(x) =

[s1(x), . . . , sN(x)]T
/∑N

j=1 sj(x) is the basis function vector, N >1 is the number of the fu-

zzy rules and sj(x) are chosen as Gaussian functions, that is, sj(x) = exp
[
−(x−µi)

T (x−µi)

η2
i

]
,

i = 1, 2, . . . , N with µi = [µi1, µi2, . . . , µin]T being the center vector and ηi the width of the
Gaussian function.

In the next section, a backstepping-based adaptive control procedure will be proposed.
Both the virtual control signals and adaption laws will be designed as

αij(x̄ij) = −(λij + 0.5)x̄ij −
1

2a2
ij

x̄ij θ̂iS
T
ij(Xij)Sij(Xij), (6)

˙̂
θi =

ni∑
j=1

γi

2a2
ij

x̄2
ijS

T
ij(Xij)Sij(Xij) − σiθ̂i, (7)

where, for 1 ≤ i ≤ N , 1 ≤ j ≤ ni, λij, aij, γi and σi are positive design parameters,

Xij =
[
xT

ij, θ̂i, ri

]T
with x ij = [xi1, xi2, . . . , xij]

T , and x̄ij satisfies the following coordinate

transformation:

x̄ij = xij − αi(j−1), (8)

where αi0 = 0, θ̂i is the estimation of unknown constant θi which is defined as

θi =
1

b
∥ Wij ∥2; 1 ≤ i ≤ N, 1 ≤ j ≤ ni, (9)

where ∥ Wij ∥ denotes the norm of the ideal weight vector of fuzzy logic systems, which
will be specified at the jth design step. Specifically, αini

denotes the control input ui.
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Lemma 2.2. [5] If Vi is an exp-ISpS Lyapunov function for a control system, i.e., Equa-
tions (3) and (4) hold, then for any constant c̄i in (0, ci0), any initial condition xi0 =
xi0(0), and any function µ̄(xi1) ≥ µ(|xi1|) there exists finite time Ti0 = Ti0(c̄i, ri0, zi0),
nonnegative function Di(t) defined for all t ≥ 0 and a signal described by

ṙi = −c̄iri + µ̄i(xi1(t)) + di, ri(0) = ri0, (10)

such that Di(t) = 0 for all t ≥ Ti0,

Vi(zi(t)) ≤ ri(t) + Di(t). (11)

For all t ≥ 0, the solutions are defined. Without losing of generality, this paper takes
µ̄i(.) as µ̄i(s) = s2µi0 (s2), where µ̄i(.) is a nonegative smooth function. Therefore, the
dynamical ri defined by (10) becomes

ṙi = −c̄iri + x2
i1µi0

(∣∣x2
i1

∣∣)+ di0, ri(0) = ri0, (12)

where µi0 is a nonnegative smooth function.

3. Adaptive Fuzzy Control Design. For simplicity, the time variable t and the state
vector x ij are omitted from the corresponding functions and let Sij(Xij) = Sij.

Step 1. Based on x̄i1 = xi1, let us first consider the subsystem

żi = qi(zi, xi),

ẋi1 = gi1xi2 + fi1 + ∆i1(xi1, zi, t). (13)

To stabilize the subsystem (13), we consider a Lyapunov function as

Vi1 =
1

2
x̄2

i1 +
1

λi0

ṙi +
b

2γi

θ̃2
i . (14)

Then, the time derivative of Vi1 is

V̇i1 ≤ x̄i1(gi1xi2 + fi1) + |x̄i1|ϕi11(|xi1|) + |x̄i1|ϕi12(|zi|) −
c̄i

λi0

ri

+
1

λi0

(
x2

i1µi0

(∣∣x2
i1

∣∣)+ di0

)
− b

γi

θ̃i
˙̂
θi, (15)

where θ̃i = θi − θ̂i. By Assumption 2.1 and 0 ≤ |η| − η tanh
(

η
ϵ

)
≤ δϵ, δ = 0.2785, we

obtain

|x̄i1|ϕi11(|xi1|) ≤ x̄i1ϕ̂i11(xi1) + ϵ′i11, (16)

where ϵ′i11 = 0.2785ϵi11 and ϕ̂i11(xi1) = ϕi11(|xi1|) tanh
(

x̄i1ϕi11(|xi1|)
ϵi11

)
.

By using the same derivations as [5], the following result holds:

|x̄i1|ϕi12(|zi|) ≤ x̄i1ϕ̂i12(xi1, ri) + ϵ′i12 +
1

4
x̄2

i1 + di1(t), (17)

where ϵ′i12 = 0.2785ϵi12, di1(t) = (ϕi12 ◦ αi1
−1(2Di(t)))

2
and

ϕ̂i12(xi1, ri) = ϕ̄i12(ri) tanh

(
x̄i1ϕ̄i12(ri)

ϵi12

)
with ϕ̄i12(ri) = ϕi12 ◦ αi1

−1(2ri).
Substituting (16) and (17) into (15) results in

V̇i1 ≤ x̄i1

(
gi1xi2 + fi1 +

1

4
x̄i1 + ϕ̂i11(xi1) + ϕ̂i12(xi1, ri) +

1

λi0

x̄i1µi0

(∣∣x̄2
i1

∣∣))
− c̄i

λi0

ri +
di0

λi0

+
2∑

k=1

ϵ′i1k + di1(t) −
b

γi

θ̃i
˙̂
θi. (18)
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Step j. (2 ≤ j ≤ ni) Similar procedures are taken for i = 2, . . . , ni as those outlined
in Step 1. The dynamics of x̄ij = xij − αi(j−1) is given by

˙̄xij = gijxi(j+1) + fij + ∆ij − α̇i(j−1), (19)

where

α̇i(j−1) =

j−1∑
k=1

∂αi(j−1)

∂xik

(
gikxi(k+1) + fik + ∆ik

)
+

∂αi(j−1)

∂θ̂i

˙̂
θi +

∂αi(j−1)

∂ri

ṙi. (20)

Consider a Lyapnov function candidate as Vij = 1
2
x̄2

ij. Then, differentiating Vij gives

V̇ij ≤ x̄ij

(
gijxi(j+1) −

j−1∑
k=1

∂αi(j−1)

∂xik

gikxi(k+1) + fij −
j−1∑
k=1

∂αi(j−1)

∂xik

fik

−
∂αi(j−1)

∂ri

ṙi

)
+
∣∣x̄ij∆̄ij

∣∣− x̄ij

∂αi(j−1)

∂θ̂i

˙̂
θi (21)

where ∆̄ij = ∆ij −
∑j−1

k=1

∂αi(j−1)

∂xik
∆ik. By using triangular inequality and Assumption 2.1,

one has

∣∣x̄ij∆̄ij

∣∣ ≤ |x̄ij|

(
ϕij1

(∣∣x ij

∣∣)+

j−1∑
k=1

∣∣∣∣∂αi(j−1)

∂xk

∣∣∣∣ϕik1 (|x ik|)

)

+ |x̄ij|

(
ϕij2(|zi|) +

j−1∑
k=1

∣∣∣∣∂αi(j−1)

∂xk

∣∣∣∣ϕik2(|zi|)

)
. (22)

Subsequently, by following the similar estimation methods to (16) and (17) for terms
at the right hand side of (22), we rewrite (21) as

V̇ij = x̄ij

(
gijxi(j+1) −

j−1∑
k=1

∂αi(j−1)

∂xik

gikxi(k+1) + fij −
j−1∑
k=1

∂αi(j−1)

∂xik

fik + ϕ̂ij1

(
x ij, θ̂i, ri

)
+ ϕ̂ij2

(
x ij, θ̂i, ri

)
+

x̄ij

4

[
1 +

j−1∑
k=1

(
∂αi(j−1)

∂xk

)2
]
−

∂αi(j−1)

∂ri

ṙi

)
+ dij(t)

+
2∑

k=1

ϵ′ijk − x̄ij

j−1∑
k=1

∂αi(j−1)

∂θ̂i

˙̂
θi. (23)

Now, choose the following Lyapunov function for the whole systems:

V =
N∑

i=1

ni∑
j=1

Vij =
N∑

i=1

ni∑
j=1

1

2
x̄2

ij +
b

2γi

θ̃2
i . (24)

By considering (18) and (23), we obtain

V̇ ≤
N∑

i=1

ni−1∑
j=1

x̄ij

{
gijαij + f̂ij(Xij)

}
+

N∑
i=1

x̄ini

{
gini

ui + f̂ini
(Xini

)
}
−

N∑
i=1

c̄i

λi0

ri

+
N∑

i=1

di0

λi0

+
2∑

k=1

N∑
i=1

ni∑
j=1

ϵ′ijk +
N∑

i=1

ni∑
j=1

dij(t) −
N∑

i=1

b

γi

θ̃i
˙̂
θi, (25)
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where the following result has been used:

−
N∑

i=1

ni∑
j=2

x̄ij

∂αi(j−1)

∂θ̂i

˙̂
θi ≤

N∑
i=1

ni∑
j=2

x̄ij

∂αi(j−1)

∂θ̂i

σiθ̂i −
N∑

i=1

ni∑
j=2

x̄ij

∂αi(j−1)

∂θ̂i

j−1∑
k=1

γi

2a2
ik

x̄2
ikS

T
ikSik

+
N∑

i=1

ni∑
j=2

γi

2a2
ij

x̄2
ijS

T
ijSij

j∑
k=2

∣∣∣∣x̄ik

∂αi(k−1)

∂θ̂i

∣∣∣∣ , (26)

and f̄ij(Xij), 1 ≤ i ≤ N , 1 ≤ j ≤ ni are defined as

f̂i1(Xi1) = fi1 +
1

4
x̄i1 + ϕ̂i11(xi1) + ϕ̂i12(xi1, ri) +

1

λi0

x̄i1µi0

(∣∣x̄2
i1

∣∣) , (27)

f̂ij(Xij) = gi(j−1)x̄i(j−1) −
j−1∑
k=1

∂αi(j−1)

∂xik

gikxi(k+1) + fij −
j−1∑
k=1

∂αi(j−1)

∂xik

fik + ϕ̂ij1

(
x ij, θ̂i, ri

)
+ ϕ̂ij2

(
x ij, θ̂i, ri

)
+

x̄ij

4

[
1 +

j−1∑
k=1

(
∂αi(j−1)

∂xk

)2
]

+
∂αi(j−1)

∂θ̂i

σiθ̂i −
∂αi(j−1)

∂ri

ṙi

−
∂αi(j−1)

∂θ̂i

j−1∑
k=1

γi

2a2
ik

x̄2
ikS

T
ikSik +

γi

2a2
ij

x̄ijS
T
ijSij

j∑
k=2

∣∣∣∣x̄ik

∂αi(k−1)

∂θ̂i

∣∣∣∣ . (28)

Then, for any given εij ≥ 0 there exists a fuzzy logic system W T
ij Sij(Xij) such that

f̂ij(Xij) = W T
ij Sij(Xij) + δij(Xij), (29)

where δij refers to the approximation error and satisfies |δij| < εij. Furthermore, by
Young’s inequality, one has

x̄ij f̂ij(Xij) ≤
b

2a2
ij

x̄2
ijθiS

T
ijSij +

1

2
a2

ij +
b

2
x̄2

ij +
1

2b
ε2

ij, (30)

where the unknown constant θi has been defined in (9).
Substituting (29) into (25) and using (30) produces

V̇ ≤
N∑

i=1

ni∑
j=12

x̄ij

(
gijαij +

b

2a2
ij

x̄ijθiS
T
ijSij

)
+

N∑
i=1

ni∑
j=1

b

2
x̄2

ij +
N∑

i=1

ni∑
j=1

(
2∑

k=1

ϵ′ijk

+
1

2
a2

ij +
1

2b
ε2

ij + dij(t)

)
+

N∑
i=1

di0

λi0

−
N∑

i=1

1

λi0

c̄iri −
N∑

i=1

b

γi

θ̃i
˙̂
θi. (31)

Next, by designing the virtual control αij in (6), we have

x̄ijgijαij ≤ −λijbx̄
2
ij −

b

2
x̄2

ij −
b

2a2
ij

x̄2
ij θ̂iS

T
ijSij. (32)

Further, by combining (31) together with (32) and (9), we rewrite (31) as

V̇ ≤ −
N∑

i=1

(
ni∑

j=1

λijbx̄
2
ij +

σib

2γi

θ̃2
i +

c̄i

λi0

ri

)
+

N∑
i=1

di0

λi0

+
N∑

i=1

ni∑
j=1

(
2∑

k=1

ϵ′ijk +
1

2
a2

ij +
1

2b
ε2

ij + dij(t) +
σib

2γi

θ2
i

)
≤ −a0V + b0, (33)

where a0 = min{2λijb, c̄i, σi, 1 ≤ i ≤ N, 1 ≤ j ≤ ni} and b0 = 1
2

∑N
i=1 δ∗i

2 +
∑N

i=1
di0

λi0
+∑N

i=1

∑ni

j=1

(∑2
k=1 ϵ′ijk + 1

2
a2

ij + 1
2b

ε2
ij + dij(t) + σib

2γi
θ2

i

)
, and the result θ̃iθ̂i ≤ −1

2
θ̃2

i + 1
2
θ2

i
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has been used in the above inequality. Equation (33) means that all the signals in the
closed-loop system are semi-globally uniformly ultimately bounded in mean square. The
main result is summarized by the following theorem.

Theorem 3.1. Under Assumptions 2.1-2.3, consider the closed-loop nonlinear system
consisting of the system (1), controller (6), and adaptive law (7). Then, under the action

of controller (6), for any initial conditions
[
xT

ij(0), θ̂i(0)
]T

∈ Ω0 (where Ω0 is an appro-

priately chosen compact set), all the signals in the closed-loop system are semi-globally
uniformly ultimately bounded in the sense of mean square.

4. Simulation Example. Consider the following second-order nonlinear systems
ż1 = −z1 + 0.5x2

11 + 0.5,
ẋ11 = x12 + x2

11 sin(x11) + z1x11 sin(x11),
ẋ12 = u1 + x11x12 + z1x11x12,
y1 = x11,


ż2 = −z2 + 0.5x2

21 + 0.5,
ẋ21 = x22 + x2

21 + z2x21 sin(x21),
ẋ22 = u2 + x21 sin(x22) + z2x21 sin(x22),
y2 = x21.

Based on Theorem 3.1, choose the virtual control signal αij in (6) (i = 1, 2, j = 1),
the actual controller u1 and u2 in (6) with i = 1, 2, j = 2 and the adaptive law in
(7). The simulation is run with the initial conditions [x11(0), x12(0), x21(0), x22(0)]T =

[0.4,−0.2, 0.3,−0.3]T ,
[
θ̂1, θ̂2

]T
= [0, 0]T , the design parameters k11 = k12 = k21 = k22 = 5,

a11 = a12 = a21 = a22 = 2, γ1 = γ2 = 2 and σ1 = σ2 = 1. The simulation results are
shown in Figures 1 and 2. Apparently, Figures 1 and 2 show that all the signals in the
closed-loop system are bounded.
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Figure 1. State variables x11, x12, x21 and x22

5. Conclusion. In this paper, a fuzzy adaptive control approach has been proposed for a
class of MIMO nonlinear systems with unmodeled dynamics and dynamics disturbances.
The proposed controller guarantees that all the signals in the closed-loop system remain
semi-globally uniformly ultimately bounded. Simulation results have been provided to
illustrate the effectiveness of the proposed control scheme. Our future research will mainly
focus on the output-feedback control for the original system (1) based on the result in
this paper.
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Figure 2. The actual control inputs u1 and u2
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