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Abstract. With the development of wind energy, its intermittency challenges frequency
stabilization of power systems. Power systems also suffers from the nonlinearity of gener-
ation rate constraint (GRC). The intermittency and nonlinearity challenge load frequency
control (LFC). This paper addresses a control scheme for the LFC problem of a nonlin-
ear power system with wind turbines. To achieve the LFC task of the power system, the
control scheme combines sliding mode control and neural networks. From the Lyapunov
direct method, update formulas of the neural networks are formulated so that the control
system is of asymptotic stability. Simulation results are presented to show the perfor-
mance and effectiveness of the presented control scheme.
Keywords: Load frequency control, Renewable power system, Neural networks

1. Introduction. Wind energy is now the fastest growing energy source around the
world because of its zero emission [1]. The percentage of wind power in power systems
increases with years [2]. Influenced by climate changes, the power output of wind power
is random and intermittent, which would pose a reliability supply challenge [3].

Load frequency control (LFC) is a profitable auxiliary service to preserve the balance
between power generation and power consumption [4]. Recently, advanced control meth-
ods have been applied to the LFC problem. Many previous reports [4, 5, 6, 7] only consider
traditional power sources rather than renewable ones. With the increasing percentage of
wind power, the LFC problem of power systems with wind turbines has been paid more
and more attention.

Inherently, power systems are nonlinear [8]. The existence of the non-linearities in power
systems deteriorates the system performance, and even affects the system stability. In
order to solve the nonlinearity of generation rate constraint (GRC), a common approach
is to design a controller for the linearized nominal model; then the controller is directly
imposed on the original nonlinear system [6, 7]. To some extent, the common approach
can work but has some potential hazards because of no theoretically guaranteed stability.

The methodology of RBF networks is a universal approximator [9]. So far, how to
conquer the GRC nonlinearity by RBF networks remains untouched and problematic.
This paper focuses on the SMC method for LFC of nonlinear power systems with wind
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turbines. Sliding-mode-based neural networks are designed to suppress the entire uncer-
tainties. Some results are presented by a nonlinear power system with wind turbines.

2. System Configuration. Consider a multi-area interconnected power system. The
power system is composed of N control areas which are interconnected by tie-lines. Fig-
ure 1 represents the block diagram of the ith control area. In Figure 1, variables ∆Pgi(t),
∆Xgi(t) and ∆fi(t) are the incremental changes of generator output, governor valve po-
sition, and frequency, respectively. ∆PLi(t) is load disturbance, and ∆Pci(t) is control
input. Tgi, Tti and Tpi are the time constants of governor, turbine and electric system
governor, respectively. Bi = 1

Ri
+ 1

Kpi
is the frequency bias factor where Ri is adjust-

ment deviation coefficient and Kpi is electric system gain. Tij is the synchronizing power
coefficient between area i and area j, i = 1, . . . , N and N is the number of control areas.

The area control error (ACE) in the ith control area is defined by ACEi(t) = ∆Ptie,i(t)+
Bi∆fi(t), where ∆Ptie,i(t) is the tie-line active power deviation. To force ACEi(t) to zero,
the integral of ACEi(t), an additional state, is determined by ∆Ei(t) = KEi

∫

ACEi(t)dt,
where KEi is the gain of this additional state.

Define xi(t) = [∆Xgi(t) ∆Pgi(t) ∆fi(t) ∆Ptie,i(t) ∆Ei(t)]
T . Having linearized the GRC

nonlinearity, the model, describing the LFC problem in Figure 1, is written by

ẋi (t) = Aixi (t) + Biui (t) + Fi∆Pdi (t) (1)

where ui(t) = ∆Pci (t) is the control input, and ∆PT
di (t) = [∆PLi (t) ∆Vi (t)]. Concerning

the nominal power system, Ai, Bi and Fi are formulated by [3].
Mohamed and his colleagues [3] presented a simplified frequency response model of a

DFIG-based wind turbine unit and the structure of the model is illustrated in Figure 2.

Figure 1. Dynamic model of the ith control area of the nonlinear power system

Figure 2. Simplified model of DFIG based wind turbine
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The model in Figure 2 can be described by i̇qr(t) = −
(

1

T1

)

iqr(t) +
(

X2

T1

)

Vqr(t), ẇ(t) =

−
(

X3

2Ht

)

iqr(t)+
(

1

2Ht

)

Tm(t) and Pe(t) = w(t)X3iqr(t), where iqr(t) is the q-axis component

of the rotor current, Vqr(t) is the q-axis component of the rotor voltage, w(t) is the
rotational speed, Tm(t) is the mechanical power, Ht is the equivalent inertia constant of
wind turbine and Pe(t) is the active power of wind turbine. Other symbols are explained

as X2 = 1

Rr
, X3 = Lm

Lss
, T1 = L0

wsRs
, L0 = Lrr+

L2
m

Lss
, Lss = Ls+Lm and Lrr = Lr+Lm, where

Lm is the magnetizing inductance, Rr is the rotor resistance, Rs is the stator resistance,
Lr is the rotor leakage inductance, Ls is the stator leakage inductance, Lrr is the rotor
self-inductance, Lss is the stator self-inductance and ws is the synchronous speed.

Define xwi(t) = [∆Xgi(t) ∆Pgi(t) ∆fi(t) ∆Ptie,i(t) ∆iqr,i(t) ∆wi(t) ∆Ei(t)]
T . Then,

the mathematical model, describing the LFC problem in Figure 2, has a form of

ẋwi(t) = Awixwi(t) + Bwiuwi(t) + Fwi∆Pwdi(t) (2)

where uT
wi(t) = [∆Pci(t) ∆Vqr,i(t)] and ∆PT

wdi(t) = [∆PLi(t) ∆Vi(t) ∆Tmi(t)]. Concerning
the nominal power system, Awi, Bwi and Fwi are are formulated by [3].

From (1) and (2), both the system models can be described by a uniform expression.
Without loss of generality, the expression has a form of

ẋ(t) = Ax(t) + Bu(t) + F∆P(t) (3)

Consider the parameter uncertainties and the modelling errors. (3) can be written by

ẋ(t) = (A′ + ∆A)x(t) + (B′ + ∆B)u(t) + (F′ + ∆F) ∆P(t) (4)

Here A′, B′ and F′ denote the nominal constant matrices, ∆Ax(t), ∆Bu(t) and ∆F∆P(t)
denote the parameter uncertainties and the modelling errors.

Power systems actually cover the GRC nonlinearity. The existence of GRC has adverse
effects on the system stability. Inherently, the GRC nonlinearity acts as a limiter to limit
the rate of change in the generating power. From Figure 1, such a nonlinear power system
can be formulated by

ẋ(t) = A′x(t) + B′u(t) + F′∆P(t) + ∆Ax(t) + ∆Bu(t) + ∆F∆P(t) + φ(t) (5)

where φ(t) denotes the uncertainties due to the GRC nonlinearity.
From (5), the LFC design of the nonlinear power system with wind turbines can be

divided into two parts. One is to design a controller for the nominal system. The other
is to consider how to suppress the system uncertainties.

3. Control Design.

3.1. Design of sliding mode control. Assume that ||d(t)|| ≤ d0, where || · || denotes
the Euclidean norm, d0 is constant but unknown and d(t) lumps all the uncertain terms
in (5), determined by d(t) = F ′∆P(t)+∆Ax(t)+∆Bu(t)+∆F∆P(t)+φ(t). Note that
d(t) is unmatched. In order to develop a sliding mode controller for the LFC problem of
such an uncertain power system (5), the sliding surface (6) is defined by

s = cTx (6)

where c is a sliding-surface parameter vector.
Invented by V. I. Utkin [10], the SMC law is composed of two components. One is

equivalent control law and the other is switching control law. In order to obtain the
equivalent control law, we differentiate s in (6) with respect to t. Then, substituting (5)
into ṡ yields

ṡ = cT ẋ = cTA′x(t) + cTB′u(t) + cTd(t) (7)
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When the system trajectory enters the sliding mode stage and keeps on the sliding
surface [10], the equivalent control law of the SMC system can be deduced from (7).

ueq(t) = −
(

cTB′
)−1

cTA′x −
(

cTB′
)−1

cTd(t) (8)

Owing to the effects of uncertainties, the system trajectory cannot keep on sliding along
the sliding surface (6) perfectly. To attack the issue, the reachability condition of SMC [10]

is taken into consideration, described by sT ṡ

||s||
< 0. Here ‖·‖ means 2-norm. Substituting

(7) into the left side of the reachability condition yields

sT ṡ

||s||
=

sT

||s||

[

cTA′x(t) + cTB′u(t) + cTd(t)
]

(9)

In order that the reachability condition holds true, the SMC law can be defined by

u(t) = −
(

cTB′
)−1

cTA′x −
(

cTB′
)−1

||c||d̄0 −
(

cTB′
)−1

[η sgn(s) + κs] (10)

where d̄0 = d̄0 sgn(s), sgn(s) is a signum function vector, scalar parameters η and κ are
positive constants.

Since d̄0 exists in (10), the value of d̄0 must be known to guarantee the system stability.
Unfortunately, the boundary value is rather difficult to know in practice. In the afore-
mentioned assumption, the uncertainties have an unknown boundary in the LFC system.
Consequently, how to deal with the issue has to be considered.

3.2. Design of RBF neural networks. RBF neural networks can directly map from
input-output data with a simple topological structure, which are powerful to approximate
complex nonlinearities. In order to fill this gap between the guaranteed system stability
and the unknown boundary value, RBF neural networks are employed.

Concerning the mathematical model (5), each element in x is employed as an input
element. Accordingly, the network output y is defined as the estimated boundary value
of the system uncertainties. Illustrated in Figure 3, the designed RBF neural networks
contain m inputs, 1 output and l neurons in the hidden layer, where m is the dimension
of x and l is the number of neurons in the hidden layer.

Figure 3. Structure of RBF networks

From Figure 3, define y = ˆ̄d0 (x, ω). Then, the network output can be calculated by

ˆ̄d0 (x, ω) = ωTh (x) (11)

where ω ∈ R l is the weight vector of the RBF networks. h(x) ∈ R l is the Gaussian
function vector and the pth element hp(x) of the vector h(x) is defined by

hp (x) = exp
[

−‖x − cp‖
2/(2b2

p)
]

(12)

where p = 1, 2, . . . , l. cp ∈ Rm is the center vector of the pth Gaussian function. bp is
scalar, indicating the width of the pth Gaussian function. Both cp and bp are predefined.
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Define ˆ̄d0 = ˆ̄d0 sgn(s). Then, the SMC law (10) can be rearranged by

u(t) = −
(

cTB′
)−1

cTA′x −
(

cTB′
)−1

||c||ˆ̄d0 −
(

cTB′
)−1

[η sgn(s) + κs] (13)

3.3. Stability analysis. In (11), ω has to be renewed by an update law in order that
ˆ̄d0 can match the change of uncertainties. Since the update law makes a difference to the
system stability, this topic should be investigated in the sense of Lyapunov.

Assumption 1: There is an optimal weight ω∗ such that
∣

∣ω∗Th (x) − d̄0

∣

∣ = ε (x) < ε1.

Assumption 2: There is ε0 such that d̄0 − ‖d(t)‖ > ε0 > ε1.

Theorem 3.1. Take Assumptions 1 and 2 into account. Consider the uniform system
(5), define the sliding surface (6) and adopt the SMC law (13). Then, the SMC-based
LFC system is of asymptotical stability if the update law of ω has a form of

ω̇ = ξ‖s‖
1
‖c‖h(x) (14)

where ξ = ‖c‖ (ε0 − ε1) is a positive constant and ‖·‖
1

means 1-norm.

Proof: Consider the following Lyapunov function candidate

V =
(

sT s + ξ−1ω̃T ω̃
)

/2 (15)

where ω̃ is determined by ω̃ = ω∗ − ω.
Differentiate V with respect to time t in (15) and substitute ω̃ = ω∗ − ω into the

derivative of V . The derivative of V can be formulated by

V̇ = sT ṡ− ξ−1ω̃T ω̇ (16)

In (16), replace ṡ by (7) and consider the SMC law (13). Then, (16) becomes

V̇ = sT ṡ− ξ−1ω̃T ω̇ = sT
[

cTA′x(t) + cTB′u(t) + cTd(t)
]

− ξ−1ω̃T ω̇

= sT
[

−η sgn (s) − κs − ||c||ˆ̄d0 + cTd(t)
]

− ξ−1ω̃T ω̇

6
(

−η‖s‖
1
− κ ‖s‖2

)

− ‖s‖
1
||c||

(

ˆ̄d0 − d̄0

)

− ‖s‖
1
||c||

(

d̄0 − ‖d(t)‖
)

− ξ−1ω̃T ω̇

(17)

Substituting (11) and (14) into (17) yields

V̇ 6
(

−η‖s‖
1
− κ ‖s‖2

)

+ ‖s‖
1
||c||

[

|ε (x)| −
(

d̄0 − ‖d(t)‖
)]

(18)

From Assumptions 1 and 2, |ε (x)| −
(

d̄0 − ‖d(t)‖
)

< ε1 − ε0 such that V̇ < 0 in (18).
In the sense of Lyapunov, the SMC-based LFC system is asymptotically stable. �

4. Simulation Results. An interconnected power system with wind turbines is utilized
to verify the proposed scheme. The power system consists of two control areas. Each
control area has an aggregated generating unit with GRC in Figure 1 and an aggregated
wind turbine unit in Figure 2. The system schematic is illustrated in Figure 4. Concerning
the renewable power system, all physical parameters are presented in [3].

Consider the SMC controllers. Their sliding surfaces are determined by Acker command
of MATLAB. Other parameters of the four controllers are set by η = 0.1 and κ = 10.
Concerning the RBF NNs, the initial weights between the hidden and output layers are
set by random numbers in the open interval (0, 1) as well as the widths of the Gaussian
function vectors. Other parameters of the networks are set by ξ0 = 0.002 and ξ1 = 0.001.

To show the performance of the presented method, two step load disturbances PL1 =
PL2 = 1% are simultaneously applied to the interconnected power system at t = 5s.
Figure 5 illustrates the frequency deviations, the area control errors, the deviations of
tie-line active power and the outputs of the four RBF NNs. Without doubt, the system
state changes of the LFC system with RBF NNs in Figure 5 are smoother and the settling
times are shorter.
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Figure 4. Block diagram of the considered two-area power system
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Figure 5. Simulation results: (a) ∆f1; (b) ∆f2; (c) ACE1; (d) ACE2; (e)
∆Ptie; (f) RBF NNs outputs in the two control areas

5. Conclusions. This article has addressed the LFC problem for renewable power sys-
tems in the presence of GRC. The control scheme is by means of SMC. To suppress the
uncertainties of the LFC problem, RBF networks are adopted. The theoretical analysis
proves that the SMC-based LFC system is of asymptotic stability. The presented control
scheme has achieved the LFC problem of an interconnected renewable power system. How
to apply the proposed method to an integrated wind/solar system would constitute an
important area for future research.
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