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Abstract. In this paper we propose a new matching pursuit algorithm, termed Random
Regularized Matching Pursuit (RrMP), to solve compressed sampling tomoSAR imaging
problem. This method pursues multiple columns of a sensing matrix at each iteration,
randomly bisects these columns, chooses the subset with smaller residual energy, makes
a dropout/replacement operation to the entries of the subset by a rule, and estimates the
amplitudes supporting on the candidate entries. The advantages of our proposed algo-
rithm are wider sparse reconstruction range and less CPU time, and it has ability to save
more CPU time by parallel computing.
Keywords: TomoSAR imaging, Compressed sensing, Matching pursuit, Random regu-
larization

1. Introduction. SAR imaging is an important application in radar signal processing.
TomoSAR imaging is a spatial scatterer distribution reconstruction problem which de-
codes the reflector position from the phase shift hiding in successively received signals
[10]. The tomoSAR imaging algorithms can be categorised to two classes: finding dense
solution and finding sparse solution. The former is based on the Nyquist sampling theory
and discrete Fourier transform, e.g., Polar Format Algorithm (PFA) [11, 12]; the latter
can be regarded as finding the sparse solution of an under-determined linear system, so
it is naturally induced to the Compressed Sensing (CS) problem [1, 2, 3, 4]. Even a
small size of two-dimensional SAR image, e.g., 100 × 100, becomes large if the image is
reshaped from a matrix form to a vector form. It makes the well-known sparse-induced
methods, e.g., ℓ0 norm optimization algorithms Orthogonal Matching Pursuit (OMP)
[5], Compressive Sampling Matching Pursuit (CoSaMP) [6], run slowly. In response to
this issue, we propose a new matching pursuit based algorithm, termed Random Reg-
ularized Matching Pursuit (RrMP). This algorithm utilizes some kind of bisecting and
dropout/replacement operation to regularize the indexes of sparse representation vector.
In this way RrMP algorithm achieves less CPU time and wider sparsity range while keep-
ing the same performance, compared with OMP, CoSaMP, Basis Pursuit (BP) [7] and
Approximate Message Passing (AMP) [8] algorithms.

The rest of this paper is organized as follows. We describe the tomoSAR imaging phys-
ical model and the equivalent compressed sensing model in Section 2, and then explain
the RrMP algorithm in Section 3, and then make experiments in Section 4. We draw a
conclusion in the last section.

2. Problem Formulation. In this work, we give some assumptions of free space prop-
agation, narrow bandwidths, far-field plane waves, and a linear single bounce (Born)
scattering approximation. This treatment is standard and follows from a theoretical anal-
ysis of the scalar wave equation [9]. Figure 1 shows the diagram of tomoSAR physical
model. Suppose the origin of cartesian system (u, v) is the space rotation center (o), and
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Figure 1. The original physical model of tomoSAR imaging

the target is fixed at (o) when a radar measures it. A radar is located at (0, R0), where R0

is a constant. Another cartesian system (x, y) overlaps on the previous cartesian system
(u, v) with a bias angle θ between y axis and v axis. The coordinate transform is given
by

u = x cos θ + y sin θ = r sin(β − θ), (1)

v = y cos θ − x sin θ = r cos(β − θ). (2)

The shape of target is irregular, and it can be partitioned to grids. Scatterers are deployed
in this area. r denotes a vector from the origin to a scatterer located at (x, y), and β
denotes the rotation angle between r and y axis. The distance from the radar to the
scatterer is R(r, η), where η is a slow time parameter. Assume Doppler shift of target
is zero for tomoSAR imaging. Define the Linear Frequency Modulation (LFM) signal in
radar application as follows

p(t) = w(t) exp
{
j
(
2πfct + Krπt2

)}
, (3)

where fc is carrier frequency, Kr is frequency modulation rate, w(t) is a rectangular
window function, w(t) = 1 for 0 ≤ t ≤ τw, and w(t) = 0 for otherwise. The received echo
signal is given by

y(t, η) =

∫
r

f(r)p

(
t− 2R(r, η)

c

)
+ ϵ(t), (4)

where f(r) is a scattering function, p
(
t− 2R(r,η)

c

)
is the delay function of (3). Assume

the incident ray is a plane wave. After de-chirp operation, the two dimensional spatial
spectra of tomoSAR echo are given by

Y (f, θ) =

∫
x

∫
y

g(x, y) exp{−2jf(x cos θ + y sin θ)}, (5)

where f = 2π/λ is spatial frequency, λ is wavelength, (x, y) is the position of a scatterer
in the target coordinate, θ is the rotation angle between radar coordinate and target coor-
dinate, and g(x, y) is the scattering coefficient. Using summation to replace integration,
the discrete variables (in vector form) are: spatial frequency f ∈ CP , where P is frequency
sampling number; rotation angle θ ∈ CQ, where Q is angle sampling number; scattering
coefficient vector x ∈ CN which is composed of g(x, y), where N ≥ P × Q is the pixels
number of a tomoSAR image; received echo signal y ∈ CM ; and Gaussian noise ϵ ∈ CM ,
where M = P ×Q. The linear system form of (5) is

y = Ax + ϵ, (6)
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where F (p, q, n) , exp{−2jfp(xn cos θq + yn sin θq)}, and then

A =



F (1, 1, 1) F (1, 1, 2) · · · F (1, 1, N)
· · · · · · · · · · · ·

F (P, 1, 1) F (P, 1, 2) · · · F (P, 1, N)
· · · · · · · · · · · ·

F (1, Q, 1) F (1, Q, 2) · · · F (1, Q, N)
· · · · · · · · · · · ·

F (P,Q, 1) F (P, Q, 2) · · · F (P, Q,N)


.

Notice that the scatterers are very sparse in a tomoSAR image. According to the com-
pressed sampling theory, it is feasible to randomly draw some rows from A to decrease P
and Q which are corresponding to the sampling rate. In this way people can use cheaper
commercial device to design the tomoSAR imaging instrument.

To solve the linear system (6), we consider an optimization problem

x̂ = arg min
x
∥x∥p s.t. ∥y −Ax∥22 ≤ ϵ. (7)

Thanks to the very sparse property of the tomoSAR image, we set p = 0 to induce an
ℓ0 norm optimization for (7) since the ℓ0 norm optimization is more applicable to very
sparse case than ℓ1 norm optimization.

3. RrMP Algorithm. In this section we propose the RrMP algorithm. Our original idea
is simple: firstly, to accelerate pursuit speed the algorithm should find multiple columns
of the sensing matrix A at each iteration, like the improvement of CoSaMP over OMP;
secondly, since CoSaMP does not work well for strong column correlation sensing matrix,
the algorithm should not pursue too many columns at each iteration, and it must do some
kind of regularization for the indexes of the columns. Following this idea, we explain the
steps of RrMP algorithm.

We use A′ to denote transpose, the subscript l to denote left, r to denote right, and |U |
to designate the cardinality of a temporary support U . We define two functions. R2s\s(v)
finds the indexes of 2s < K absolutely largest entries of v, where s is the probe length,
and then shuffles these indexes and bisects them. Outputs of this function are the left
and right indexes subset and the amplitudes supported on them, respectively. Support
updating function H(u, c, Λ, S) generates a new indexes set by a group of rules according
to the input parameters, and we will explain it later.

3.1. Algorithm description. The steps of RrMP are listed in Algorithm 1. Line 2
obtains two index candidates, Λl and Λr, and the correlation coefficients, cl and cr,
between the residual and columns of A. It is a key step, since the shuffle and bisecting
operation are equivalent to locally random search in an N dimensional {0, 1} space. Line
3 merges old support set Sn with the two candidates, respectively. Lines 4 and 5 roughly
estimate x by the Least Squares (LS) operation. Lines 6 and 7 choose the minimal residual
branch as the new candidate. This prune operation can be regarded as a regularization.
Line 8 updates the support set. Line 9 computes a refined estimation of x based on the
so-obtained support in line 8. It is worth noting that lines 3-5 can be done by parallel
computing, on account of the independent left subset and right subset. In this way about
1/3 CPU time can be saved, since the CPU time of matching pursuit based methods
mainly depends on the LS computation.

Now we define the support updating function H (un+1, cn+1, Λn+1, Sn) as follows. Firstly,
define two threshold functions corresponding to the sparse representation coefficients u
which are evolved with iterations

a , min
i∈Sn

{∣∣(un+1
)∣∣

i

}
, b , max

j∈Λn+1

{∣∣(un+1
)∣∣

j

}
. (8)
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Algorithm 1 Random regularized matching pursuit algorithm

Input: y, A, K, s
Output: xn+1

1: S0 ← ∅, x0 ← 0
2: (Λl, cl, Λr, cr)← R2s\s(A

′(y −Axn))
3: Ul ← Sn ∪ Λl, Ur ← Sn ∪ Λr

4: ul ← arg minz{∥y −Az∥2, z ⊂ supp(Ul)}
5: ur ← arg minz{∥y −Az∥2, z ⊂ supp(Ur)}
6: θ = arg min{l,r} {∥y −Aul∥2, ∥y −Aur∥2}
7: Λn+1 ← Λθ, cn+1 ← cθ, un+1 ← uθ, Un+1 ← Uθ

8: Sn+1 ← H (un+1, cn+1, Λn+1, Sn)
9: xn+1 ← arg minz {∥y −Az∥2, z ⊂ supp(Sn+1)}

Secondly, define the indexes updating procedure just for u

P ,



Sn ∪
{

j : arg maxj∈Λn+1

{∣∣(un+1)j

∣∣}}
, a

2
> b

Sn ∪
{

j : j ∈ Λn+1,
∣∣(un+1)j

∣∣ ≥ a
2

}
, a > b ≥ a

2

Sn ∪
{

j : j ∈ Λn+1,
∣∣(un+1)j

∣∣ ≥ b
2

}
, b > a ≥ b

2{
i : i ∈ Sn,

∣∣(un+1)i

∣∣ ≥ b
2

}
∪

{
j ∈ Λn+1,

∣∣(un+1)j

∣∣ ≥ b
2

}
, b

2
≥ a.

(9)

Thirdly, define the the indexes updating procedure just for the correlation coefficients

Q ,
{

j : j ∈ Λn+1,
∣∣(cn+1

)
j

∣∣ ≥ 0.5
∥∥cn+1

∥∥
∞

}
. (10)

Lastly, we merge the two updated indexes to obtain the output of H (un+1, cn+1, Λn+1, Sn)

Sn+1 = P ∪Q. (11)

The idea of this support updating function comes from the following two points: firstly,
not all the indexes in the candidate set are correct, the algorithm should drop or replace
some indexes, as shown in (9) and (10), and these dropout/replacement rules can be
considered as a kind of regularization; secondly, the candidate indexes corresponding to
correlation coefficients and to sparse vector do not necessarily overlap entirely, and some
correct indexes maybe belong to the former and some belong to the latter; therefore, it is
necessary to merge them, as shown in (11).

When |P | is equivalent to the sparsity K, if the precision does not reach the error
bound, set Sn+1 = P , we keep running RrMP at most 2s iterations and then stop the
algorithm.

3.2. Computational complexity. For matching pursuit based algorithms, the main
CPU time exhausts in LS steps. It is well known that Householder LS method needs
O (2N2(M −N/3)) flop. We cannot accurately determine how many candidates in the
s new column indexes can be picked according to H (un+1, cn+1, Λn+1, Sn) function, but
if we roughly set the number of winners in these candidates to s/2, the computational
complexity of RrMP can be estimated as O([(4M −K− 2)K3 +(6M − 1)K2 +2MK]/s).

4. Experiments. In this section, we investigate the advantages of RrMP algorithm via
experiments, in comparison with five well-known algorithms: OMP and CoSaMP, which
come from Needell’s work1; AMP and GAMP, which come from Kamilov’s work2 and

1http://www.cmc.edu/pages/faculty/DNeedell
2http://people.epfl.ch/ulugbek.kamilov
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Rangan’s work gamplab3; we use Matlab’s linprog function to solve BP. The Relative
Mean Square Error (RMSE) is regarded as the performance metric, RMSE = 1/Q ×∑Q

l=1

∥∥x̂l − xl
∥∥

2

/∥∥xl
∥∥

2
, where x̂l is the estimate of x at the l-th trial. To avoid symbol

confusion, notation L is in place of notation s in Algorithm 1, e.g., RrMP-L4 means probe
length 4. We use Matlab’s pinv function to implement LS in RrMP, OMP and CoSaMP
algorithms. We do not use parallel computing to lines 3-5 in Algorithm 1 for fair play.

The first experiment investigates exact reconstruction frequency variation with the
growing of sparsity K. We set the exact reconstruction threshold ξ = 0.015, since the
energy of noise ϵ is set to 0.0015, i.e., one-tenth of ξ. One trial is regarded as successful if
the RMSE is less than ξ, and that means RMSE does not exceed 10 times of the energy
of noise. The exact reconstruction frequency can be obtained by 200 trials. Figure 2
shows that each of RrMP-L2/L4/L6/L8 achieves obviously higher exact reconstruction
frequency than OMP, CoSaMP, BP and AMP when the sparsity K grows up. Define the
sparsity ratio as δ = K/N . It is worth noting that the performance of CoSaMP decreases
drastically when K is greater than 40, or equivalently δ > 15.6%, and the performance
of BP and AMP also decline fast with greater K. In contrast, RrMP works well in wider
sparsity range about 30% more than CoSaMP, and about 20% more than BP and AMP.

Figure 2. Exact reconstruction frequency comparison, N = 256, M = 128

The second experiment shows tomoSAR image reconstruction result. The target is
a real world crawler crane. TomoSAR carrier frequency is fc = 9(GHz). There are
P = 101 frequency samples drawn over 1(GHz) bandwidth centered at fc, and Q =
101 angle samples drawn over 87.5◦ ∼ 92.5◦ centered at 90◦ azimuth, uniformly spaced
respectively. The total pixels number is N = P ×Q = 10201. We create A from (6), and
then draw M = ⌊0.5N⌋ rows randomly. Since the measurements number M is usually
chosen to be O(K log N), K can be estimated roughly to λM/ log N , and we set K = 60.
Using PFA reconstruction result as a reference, we compare OMP, CoSaMP, GAMP with
RrMP-L4/L6/L8. Note that AMP algorithm is not suitable for highly correlated sensing
matrix; therefore, we use GAMP in place of AMP to see whether it can work in the
tomoSAR imaging application. Figure 3 shows that CoSaMP and GAMP cannot recover
the tomoSAR image, but OMP and RrMP all work well. On the one hand, from the
relative error comparison in Table 1, we can see that the performance of RrMP-L4/L6/L8
is almost the same as that of OMP; on the other hand, RrMP runs much faster than OMP,
CoSaMP and GAMP, and the CPU time of RrMP-L4/L6/L8 is only 48.14%, 41.26%

3http://eeweb.poly.edu/ srangan/index.html
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PFA reconstructed image CS reconstructed images

Figure 3. TomoSAR imaging comparison

Table 1. Relative error and CPU time

OMP CoSaMP GAMP RrMP-L4 RrMP-L6 RrMP-L8
Relative error 0.0188 4.4101e + 04 125.9500 0.0230 0.0326 0.0350

CPU time 31.8303 24.6734 50.5852 15.3234 13.1325 14.7225

and 46.25% of OMP. Taken together, we find that our proposed RrMP algorithm has a
remarkable speed advantage and comparable performance with OMP algorithm.

5. Conclusion. In this paper we propose RrMP algorithm to solve the compressed sam-
pling tomoSAR imaging problem. This algorithm can reduce much CPU time by pursuing
multiple columns of the sensing matrix at each iteration, and improve the reconstruction
performance by randomly bisecting and pruning/merging these columns. It has ability to
do parallel computing in three steps which is helpful to accelerate speed further. Simu-
lation and real world tomoSAR imaging experiments confirm the effectiveness of RrMP
algorithm. In future work we plan to explore the convergence proof of this algorithm.
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