
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 9, September 2016 pp. 2235–2240

A FAST ALGORITHM FOR CORRECTING ERASURES
OF BCH CODES

Erl-Huei Lu1, Chih-Wen Shih1, Chia-Jung Li1 and Tso-Cho Chen2

1Department of Electrical Engineering
Chang Gung University

No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan
lueh@mail.cgu.edu.tw

2Department of Avionics
China University of Science and Technology

No. 200, Zhonghua St., Hengshan Township, Hsinchu County 312, Taiwan
noahchen8@gmail.com

Received March 2016; accepted June 2016

Abstract. This letter presents an erasure correcting algorithm of binary BCH codes.
The algorithm is much faster than a conventional erasure correcting method because it can
directly correct erased bits without determining the error locator polynomial and finding
the roots of the polynomial. Without loss of generality, a hardware decoder for correcting
four erasures is also demonstrated. Since the hardware decoder has simple and regular
structure, it is well-suited for VLSI implementation.
Keywords: Hardware decoder, Erasure correcting, Soft-decision decoding, Turbo prod-
uct codes, VLSI

1. Introduction. Soft-decision decoding (SDD) of a code can achieve 2-3dB of coding
gain, compared with hard-decision decoding (HDD) [1]. To date, the Chase-II algorithm
[2] has been one of the most efficient and widely-used SDD algorithms. However, the
algorithm requires a lot of HDD and arithmetic operations for decoding a codeword. To
reduce the computational complexity, Reid III et al. [3] developed a simple and fast SDD
algorithm for BCH codes based on the error magnitude evaluating algorithm introduced
in [4]. Notably, the algorithm in [4] is adopted to correct erasures of BCH codes by [3].

Turbo product codes (TPCs) can be iteratively decoded in soft-input soft-output (SISO)
manner to achieve performances near the Shannon capacity limit [5]. The SISO decoding
manner needs to process soft input information using SDD and yield extrinsic information
for the next iterative decoding. Thus, it may not be suitable for some particular appli-
cations where precise soft information is not available or high-speed decoding is critical,
such as data storage systems and optical fiber communication. Decoding a codeword
in hard-input hard-output (HIHO) manner only requires one HDD such that it is much
simpler and faster than that in SISO manner. Consequently, several HIHO decoding al-
gorithms have been developed for decoding TPCs [6,7]. On the other hand, using HIHO
algorithms to iteratively decode TPCs may appear closed-chains error patterns (CCEPs),
which degrades the decoding performance [8]. To remedy the drawback, Al-Dweik and
Sharif [7] adopted an erasure decoder to correct CCEPs.

A conventional method for correcting erasures of BCH codes needs to perform twice
HDD [1], and each HDD includes two time-consuming processes: determining the error
locator polynomial (ELP) and finding the roots of the ELP. Recently, an efficient algorithm
was introduced to evaluate error magnitudes of RS codes [9], which uses a syndrome
refining process to refine syndromes such that it can avoid computing the error evaluator
polynomial. Motivated by the method, a fast algorithm is proposed in this letter to correct
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erasures of BCH codes without determining the ELP and finding the roots of the ELP.
Furthermore, since the error-magnitude extracting process in [9] has been simplified to
form the estimating process of the new algorithm, the operation of computing inverses
can be avoided by the new one. Finally, a hardware decoder for correcting erasures of
BCH codes is designed based on the new algorithm. Since the hardware decoder is simple
and regular, it is well-suited for VLSI implementation.

2. Preliminaries and Notations. An (n, k) t-error-correcting binary BCH code of
length n = 2m−1 can be defined in terms of the roots of its generator polynomial. Let α be
a primitive element in the Galois field GF (2m), where m is an integer with m ≥ 3. Then
the generator polynomial g(x) is the lowest degree polynomial over GF (2), which has α,
α2, . . . and α2t as its roots. Assume that there are v (for v ≤ 2t) erasures in a received
polynomial. Then, the error polynomial can be written as e(x) = el1x

l1+el2x
l2+· · ·+elvx

lv ,
where eli ∈ GF (2) for i = 1, 2, . . . , v, and 0 ≤ l1 < l2 < · · · < lv ≤ n − 1. Let δi = eli for
i = 1, 2, . . . , v. Then, the syndromes for correcting these erasures can be defined as

Sw = δ1α
wl1 + δ2α

wl2 + · · · + δvα
wlv , for w = 1, 2, . . . , 2t. (1)

Let r(x) = r0+r1x+· · ·+rn−1x
n−1 denote the received polynomial. Then these syndromes

can be computed as

Sw = r(αw) = r0 + r1α
w + · · · + rn−1α

w(n−1), for w = 1, 2, . . . , 2t. (2)

For convenience, the notations defined in [9] are also used throughout this letter, which
are as follows. Let Pi,0 = αli , for i = 1, 2, . . . , v, and

Pi,j = αli + αlj = Pi,0 + Pj,0, for 1 ≤ j < i ≤ v. (3)

We also define

Qi,0 = Pi,0

(
= αli

)
, for i = 1, 2, . . . , v, (4)

and

Qi,j =

j∏
m=0

Pi,m = Qi,j−1Pi,j = Qi,j−1 (Pi,0 + Pj,0) , for 1 ≤ j < i ≤ v. (5)

3. Proposed Algorithm.

3.1. Decoding procedure. Suppose that the 2t syndromes have been computed using
(2). Then, the erasure-only decoding procedure of the proposed algorithm consists of a
syndrome refining process and an erasure estimating process.

Syndrome refining process:
The computing procedure of the process is the same as the syndrome refining process

in [9] as follows. Let S
(1)
w = Sw. Then, from (1) and (4) we have

S(1)
w = Sw =

v∑
i=1

δiQi,0P
w−1
i,0 , for w = 1, 2, . . . , v. (6)

From (5) and (6), we have

S(k)
w = S

(k−1)
w+1 + S(k−1)

w Pk−1,0

=
v∑

i=k

δiQi,k−2 (Pi,0 + Pk−1,0) Pw−1
i,0 , (7)

=
v∑

i=k

δiQi,k−1P
w−1
i,0 , for k = 2, 3, . . . , v, and w = 1, 2, . . . , v − k + 1.
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From (7), we know that the syndrome refining process needs to compute S
(k)
w = S

(k−1)
w+1 +

S
(k−1)
w Pk−1,0 for k = 2, 3, 4, . . . , v, and w = 1, 2, . . . , v−k+1, iteratively. Thus, the process

involves v(v − 1)/2 additions and v(v − 1)/2 multiplications over GF (2m).
Erasure estimating process:
The process estimates erasures recursively, from δv to δ1, as follows. Substituting k = v

into (7), we have S
(v)
1 = δvQv,v−1. Then, δ̃v = 1 if S

(v)
1 ̸= 0, and δ̃v = 0 if S

(v)
1 = 0. Finally,

we estimate δ̃k from δ̃v−1 to δ̃1 recursively, as

δ̃k =

 1, if S
(k)
1 +

v∑
i=k+1

δ̃iQi,k−1 ̸= 0,

0, otherwise.
(8)

From the estimating process, we know that Qi,j−1 for 2 ≤ j < i ≤ v are needed for estimat-
ing erasures. By (5), these Qi,j−1 can be computed recursively, as Qi,1 = Qi,0 (Pi,0 + P1,0),
Qi,2 = Qi,1(Pi,0 + P2,0), . . . , Qi,j−2 = Qi,j−3(Pi,0 + Pj−2,0) for 2 ≤ j < i ≤ v such that
(v− 1)(v− 2)/2 additions and (v− 1)(v− 2)/2 multiplications over GF (2m) are required.

When all Qi,j−1 have been obtained, we can compute S
(k)
1 +

∑v
i=k+1 δ̃iQi,k−1 for estimating

δ̃k from δ̃v to δ̃1 with v(v − 1)/2 additions over GF (2m).

3.2. Comparisons. Suppose that there are v erasures in a received vector of BCH codes.
As soon as the syndromes Sw, for w = 1, 2, . . . , v, have been computed using (2), the v
erased bits in r(x) can be estimated using the proposed decoding algorithm. According to
the above decoding procedure, we know that our algorithm totally requires (v−1)(3v−2)/2
additions and (v − 2)2 multiplications over GF (2m) for correcting v erasures, as listed in
Table 1. As mentioned in Section 1, the conventional method in [1] needs to perform
twice HDD for correcting v erasures of (n, k) BCH codes, where n = 2m − 1. Notably,
each of the HDDs is employed to correct t errors (where t is the error correction capability
of the BCH codes), which consists of computing syndromes, determining the ELP and
finding the roots of the ELP. Based on the Chien’s procedure [1], finding all roots for two
ELPs of degree t we totally need 2n(t−1) additions and 2nt multiplications over GF (2m).
Thus, at least 2n(t − 1) additions and 2nt multiplications over GF (2m) are involved in
a conventional methord, as listed in Table 1. Note that v ≤ 2t. In addition, from Table
II in [9], we know that for correcting v erasures the Komo-Joiner algorithm [4] consists
of 3v(v − 1)/2 additions, v2 multiplications and v(v − 1)/2 inverses over GF (2m). Thus,
our algorithm has lower computational complexity than the conventional method and the
Komo-Joiner algorithm.

4. Hardware Implementation. Based on the proposed decoding algorithm, the hard-
ware decoder for correcting v erasures consists of a syndrome computing, a syndrome
refining, a Qi,j computing and an erasure estimating units, as shown in Figure 1. Without
loss of generality, the decoder which is capable of correcting four erasures (i.e., dmin = 5)

Table 1. Computational complexities of the related algorithms for cor-
recting v erasures

Conventional Komo-Joiner Proposed

algorithm [1] algorithm [4] algorithm

Additions over GF (2m) > 2n(t − 1) 3v(v − 1)/2 (v − 1)(3v − 2)/2

Multipilications over GF (2m) > 2nt v2 (v − 1)2

Inverses over GF (2m) 0 v(v − 1)/2 0

Determining ELP necessary unnecessary unnecessary
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Figure 1. Hardware block diagram of the hardware decoder

Figure 2. The circuit of syndrome refining unit

is used as an example to illustrate the circuits of these units, except for the syndrome
computing unit.

Syndrome refining unit: For correcting four erasures, we need to refine S1, S2, S3 and

S4 into S
(2)
1 , S

(3)
1 and S

(4)
1 . Thus, the unit consists of six cells, as shown in Figure 2,

which computes S
(k)
w = S

(k−1)
w+1 + S

(k−1)
w Pk−1,0

(
= S

(k−1)
w+1 + S

(k−1)
w αlk−1

)
for k = 2, 3, 4 and

1 ≤ w ≤ 5 − k.
Qi,j computing unit: According to (5), we can compute Q4,1 = Q4,0(P4,0 +P1,0), Q4,2 =

Q4,1(P4,0 + P2,0) and Q3,1 = Q3,0(P3,0 + P1,0). Therefore, the Qi,j computing unit can be
constructed by three cells, as shown in Figure 3.

Erasure estimating unit: Based on (8), the hardware circuit of the unit is designed and

shown in Figure 4, which estimates erasures in the order of δ̃4, δ̃3, δ̃2 and δ̃1, recursively.



ICIC EXPRESS LETTERS, VOL.10, NO.9, 2016 2239

Figure 3. The circuit of Qi,j computing unit

Figure 4. The circuit of erasure estimating unit

5. Conclusion and Remarks. The proposed algorithm can correct dmin − 1 erasures
without determining the ELP and finding the roots of ELP, such that its computational
complexity is much lower than that of conventional decoding methods. Based on the
decoding algorithm, a simple and regular hardware decoder was designed which is very
well-suited for VLSI implementation. Moreover, the new decoding algorithm has an ele-
gant property which can check whether the estimated result is correct or not, as follows.
Compute S̃w = δ̃1α

wl1 + δ̃2α
wl2 + · · · + δ̃vα

wlv for w = 1, 3, . . . , 2t − 1. If S̃w = Sw, for
w = 1, 3, . . . , 2t − 1, the estimated result is assumed to be correct; otherwise, the result
must be wrong. A wrong result implies that there are some error bits which were not
assigned as erasures. Thus, a decoding error alarm can be announced.
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