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Abstract. This paper addresses the state estimation problem for multi-input multi-
output (MIMO) control systems where the sensors and controllers are connected via a
stationary memoryless uncertain digital channel without data dropout and time delay.
We focus on the argument on the inherent tradeoff between observability and the limited
data rate. In particular, the fixed data rate is employed to ensure observability every time
the plant is used, which is different from the time-varying data rate in the literature. An
allocation algorithm is constructed to regulate the transmission of the information on the
plant states in order to achieve minimum data rate for observability of MIMO control
systems. The conditions on the fixed data rate are derived, and a lower bound on the
fixed data rate for observability is given. An illustrative example is given to demonstrate
the effectiveness of the proposed scheme.
Keywords: State estimation, Fixed data rate, Observability, Multi-input multi-output
systems

1. Introduction. In networked control systems, control loops are closed over a digital
communication network. Sensors, controllers, and actuators are connected via communi-
cation channels. For such a system, there exist many advantages, such as increased system
flexibility, decreased wiring and cost, and ease of installation [1]. In many applications,
network resources (for example, network communication bandwidth) have to be shared
by many systems at the same time. However, new issues arise when the sensors and the
controllers are connected by communication channels with limited data rate [2,3].

This result was generalized to different notions of stabilization and system models. The
research on Gaussian linear systems was addressed in [4]. Control under communication
constraints inevitably suffers signal transmission delay, data packet dropout and measure-
ment quantization which might be potential sources of instability and poor performance
of control systems [5]. A predictive control policy under data-rate constraints was pro-
posed to stabilize the unstable plant in the mean square sense. [6] addressed LQ (linear
quadratic) control of MIMO discrete-time linear systems, and gave the inherent tradeoffs
between LQ cost and data rates. In [7], a quantized-observer based encoding-decoding
scheme was designed, which integrated the state observation with encoding-decoding. [8]
addressed some of the challenging issues on moving horizon state estimation for networked
control systems in the presence of multiple packet dropouts.

In this paper, we will extend the results in the literature from control under data-rate
limitations to state estimation for MIMO control systems. We focus on the argument on
the inherent tradeoff between observability and the limited data rate. In particular, the
fixed data rate is employed to ensure observability at each time step. It is different from
the case of the time-varying data rate, which only ensures control performance just in an
average or expected sense. Thus, the fixed data rate is not viewed as a special case of the
time-varying data rate. In MIMO control systems, an allocation algorithm must regulate
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the transmission of the information on the plant states, which is different from the scalar
case.

Our purpose here is to construct an allocation algorithm to regulate the transmission of
the information on the plant states in order to achieve minimum data rate for observability
of MIMO control systems. Our work here differs in that we present a lower bound on the
fixed data rate for observability of MIMO control system.

The remainder of this paper is organized as follows: Section 2 introduces problem
formulation; Section 3 deals with the state estimation problem for MIMO control systems;
the results of numerical simulation are presented in Section 4; conclusions are stated in
Section 5.

2. Problem Formulation. In this paper, we consider the following linear continuous
time multi-input multi-output (MIMO) system

Ẋ(t) = AX(t) + FV (t),

Y (t) = CX(t),
(1)

where X(t) ∈ Rn is the state process, Y (t) ∈ Rm is the measured output, and V (t) ∈ Rp

is the process disturbance. A, C, and F are known constant matrices with appropriate
dimensions. Here, it is assumed that the pair (A,C) is observable. Let Bl(z) denote the
set {x : |x−z| ≤ l} centered at z. The initial state X(0) and V (t) are bounded, uncertain
variables satisfying ∥X(0)∥ ∈ Bϕ0(0) and ∥V (t)∥ ∈ BϕV

(0), respectively, where ϕ0 and ϕV

are two known constants. For the problem to be well-posed, it is assumed that there exists
a nonsingular real matrix H that diagonalizes A = H ′ΛH, where Λ = diag[a1, a2, · · · , an].
Here, we also assume that each ai is larger than 0 (i = 1, 2, · · · , n) since the stable part
does not play any key role on observability of the system (1). Consider this case avoids
extraneous complexity. It makes our conclusions most transparent. Then, we may focus
on the argument on the inherent tradeoff between observability and the limited data rate.

Let Ts be sample time. Then, the corresponding discrete-time system is

X(k + 1) = GX(k) + W (k),

Y (k) = CX(k),
(2)

where we define X(k) := X(kTs), Y (k) := Y (kTs), W (k) :=
∫ (k+1)Ts

kTs
eA[(k+1)Ts−t]FV (t)dt,

G := eATs . Clearly, W (k) is also bounded, uncertain variable. Assume that ∥W (k)∥ ∈
BϕW

(0), where ϕW is known constant. Furthermore, it is assumed that the states of
system (2) are measurable. The initial condition X(0) and disturbance W (0), · · · ,W (k)
are mutually independent random variables.

In this paper, we consider the case where the sensors and controllers are geographically
separated and connected by a stationary memoryless uncertain digital channel without
data dropout and time delay. At each time step the channel can transmit without error R
bits of the information on the plant states that are provided by the sensors. Specifically,
we deal with the case where the data rate R provided by such a channel is an invariant
constant.

Let X̂(k) and E(k) denote the state estimate and the estimation error, respectively.
We define the estimation error as

E(k) := X(k) − X̂(k).

X(k) is causally encoded via an operator Θ as

α(k) = Θ(k, X(0), X(1), · · · , X(k)), (3)

where the codeword α(k) is transmitted over such a channel, and decoded via an operator
Υ as

X̂(k) = Υ(k, α̂(0), α̂(1), · · · , α̂(k)), (4)
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where α̂(k) denotes the received symbol at the decoder.
The multi-state case entails several difficult challenges. The first one is that, an allo-

cation algorithm must regulate the transmission of the information on the plant states.
Furthermore, it is more difficult to derive a lower bound on the fixed data rate for observ-
ability of a multi-state system than a scalar system. The encoding and decoding problems
may get even more complicated for the multi-state case.

In this paper, we consider the MIMO case, argue the state estimation problem under
the data-rate limitation, and present the inherent tradeoff between observability and the
limited data rate. The main task here is to present the condition on the fixed data rate
for observability of the MIMO system (1). Namely, we want to derive a lower bound on
the fixed data rate, which can ensure observability of system (1) in the sense

lim sup
k→∞

∥E(k)∥ < ∞. (5)

3. State Estimation for the MIMO Control System. This section deals with state
estimation for the MIMO control system with the fixed data rate. In order to present
an allocation algorithm on the data rate, we define a nonsingular real matrix by M that
diagonalizes G = M ′∆M where ∆ = diag

[
ea1Ts , ea2Ts , · · · , eanTs

]
. We define X̄(k) :=

MX(k), X̃(k) := MX̂(k), W̄ (k) := MW (k), and Ē(k) := ME(k). Clearly, it holds that

∥W̄ (k)∥ = ∥MW (k)∥ = ∥W (k)∥ ∈ BϕW
(0).

Then, the discrete-time system may be rewritten as

X̄(k + 1) = ∆X̄(k) + W̄ (k). (6)

Here, we give an allocation algorithm on the basis of the eigenvalues of G in order to
achieve minimum data rate for observability of system (6).

Then, the main result of the section is the following.

Theorem 3.1. Consider system (1). Suppose that, the initial state X(0) and disturbance
W (k) are bounded, uncertain variables satisfying ∥X(0)∥ ∈ Bϕ0(0) and ∥W (k)∥ ∈ BϕW

(0),
respectively. There exists a nonsingular real matrix H that diagonalizes A = H ′ΛH, where
Λ = diag[a1, a2, · · · , an]. Then, system (1) is observable in the sense (5) if the fixed data
rate R of the channel satisfies the following inequality:

R ≥
⌈
log2

∏n
i=1 eaiTs

⌉
(bits/sample),

where ⌈·⌉ represents the ceil function, and is defined as ⌈x⌉ := min{k ∈ Z : k > x}.

Proof: Let X̄(k) := [x̄1(k) x̄2(k) · · · x̄n(k)]′ and W̄ (k) := [w̄1(k) w̄2(k) · · · w̄n(k)]′.
Then, it follows from (6) that

x̄i(k + 1) = eaiTs x̄i(k) + w̄i(k), i = 1, 2, · · · , n.

Notice that
∥W̄ (k)∥ ∈ BϕW

(0),

∥X̄(0)∥ = ∥MX(0)∥ = ∥X(0)∥ ∈ Bϕ0(0).

Then, we have
x̄i(0) ∈ Bϕ0(0), (7)

w̄i(k) ∈ BϕW
(0). (8)

Let Ē(k) := [ē1(k) ē2(k) · · · ēn(k)]′ and X̃(k) := [x̃1(k) x̃2(k) · · · x̃n(k)]′. Here, we
set

X̃(0) = MX̂(0) = 0.

Then, we obtain
ēi(0) = x̄i(0) − x̃i(0) ∈ Bϕ0(0).
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For any time k, we assume that

x̄i(k) ∈ Bli(k)(ci(k)),

x̃i(k) = ci(k),

ēi(k) = x̄i(k) − x̃i(k) ∈ Bli(k)(0),

where li(k) and ci(k) denote the radius and midpoint of the range of x̄i(k), respectively.
The plant states will be quantized, encoded, and transmitted over a digital communi-

cation channel in order to ensure observability of system (1). Thus, we divide the range
Bli(k)(ci(k)) into ni ∈ N equal intervals. The ni indexes are encoded, and converted into
the ni codewords. It follows from [9] that the data rate R must satisfy the following
inequality:

R ≥ ⌈log2

∏n
i=1 ni⌉ (bits/sample). (9)

At time k + 1, it follows that

x̄i(k + 1) ∈ Bli(k+1)(ci(k + 1)),

x̃i(k + 1) = c(k + 1),

ēi(k + 1) = x̄i(k + 1) − x̃i(k + 1) ∈ Bli(k+1)(0),

where

li(k + 1) =
eaiTs

ni

li(k) + ϕW . (10)

Combined with Equalities (7), (8) and (10), this implies that

li(k) =

(
eaiTs

ni

)k

ϕ0 +

[
1 +

eaiTs

ni

+

(
eaiTs

ni

)2

+ · · · +
(

eaiTs

ni

)k−1
]

ϕW . (11)

If it is assumed that

ni > eaiTs (12)

holds, it follows that

lim
k→∞

li(k) =
1

1 − eaiTs

ni

ϕW .

It leads to

lim sup
k→∞

|ēi(k)| ≤ 1

1 − eaiTs

ni

ϕW .

Thus, we obtain

lim sup
k→∞

∥E(k)∥ ≤ ϕW

√√√√ n∑
i=1

(
1

1 − eaiTs

ni

)2

< ∞.

Substituting (12) into (9), we give

R ≥
⌈
log2

∏n
i=1 eaiTs

⌉
(bits/sample). (13)

Thus, system (1) is observable if Inequality (13) holds. �
It is shown in Theorem 3.1 that, system (1) is observable if the fixed data rate is larger

than the lower bound given. The lower bound is different from ones in the literature
because the data rate in our results is fixed, but ones in the literature are time varying.
Using the fixed data rate may lead to better control performances.

Furthermore, the estimation error is bounded in the presence of the disturbance. Bound-
ability is a very weak notion of observability. Then, we also further argue state estimation
for MIMO control systems without the disturbance, and give the following result.
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Corollary 3.1. Consider system (1) without the disturbance. Suppose that, the initial
state X(0) is a bounded, uncertain variable satisfying ∥X(0)∥ ∈ Bϕ0(0). There exists a
nonsingular real matrix H that diagonalizes A = H ′ΛH, where Λ = diag[a1, a2, · · · , an].
Then, system (1) is asymptotically observable in the sense

lim sup
k→∞

∥E(k)∥ = 0,

if the fixed data rate R of the channel satisfies the following inequality:

R ≥
⌈
log2

∏n
i=1 eaiTs

⌉
(bits/sample).

Proof: Here, we set ∥W (k)∥ = 0. Namely, let ϕW = 0. Then, it follows from (11) that

li(k) =
(

eaiTs

ni

)k

ϕ0.

If it is assumed that Inequality (12) holds, it follows that

lim
k→∞

li(k) = 0.

It leads to
lim sup

k→∞
|ēi(k)| = 0.

Thus, we obtain
lim sup

k→∞
∥E(k)∥ = 0.

Thus, the proof is complete. �

4. Numerical Example. In this paper, we discuss a class of networked control problems
which arises in the coordinated motion control of autonomous and semiautonomous mobile
agents, e.g., unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), and
unmanned underwater vehicles (UUVs). Here, we present a practical example, where three
of all the states of an unmanned underwater vehicle evolve in discrete time according to

X(k + 1) =

 1.2312 1.5423 −0.2543
0.2156 −2.3247 0.6321
0.7834 0.2725 1.7517

X(k) + 5W (k), Y (k) = X(k).

Let X(0) = [3.24 −3.51 2.56]′ and ϕW = 0.1. Here, we set ϕW on the basis of the
environmental noise. The quantization, coding and control scheme on the basis of the
condition in Theorem 3.1 is employed. We set R = 120 (bits/s). For the above system
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Figure 1. The estimation error responses with the disturbance



2268 Q. LIU

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

3

4

Time k

T
he

 e
st

im
at

io
n 

er
ro

r

 

 
e1(k)
e2(k)
e3(k)

Figure 2. The estimation error responses without the disturbance

with the disturbance, the corresponding simulation is given in Figure 1. It is shown that
the estimation error is bounded.

If we set W (k) = 0, the corresponding simulation is given in Figure 2. It is shown that
the system is asymptotically observable if the data rate is larger than the lower bound
given in Corollary 3.1. Clearly, the data rate and disturbance have important effects on
observability. The fixed data rate is employed to ensure observability at each time step,
and to achieve good performance not just on average.

5. Conclusions. In this paper, we considered MIMO control systems with the limited
data rate, addressed the state estimation problem with the fixed data rate, and presented
an allocation algorithm to regulate the transmission of the information on the plant states
in order to achieve minimum data rate for observability. It was derived that the data rate
and disturbance have important effects on observability of networked control systems.
The simulation results have illustrated the effectiveness of the proposed scheme. The
study of nonlinear system with limited data rate will be our future work.
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