
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 9, September 2016 pp. 2283–2289

POINT CLOUD COARSE MATCHING METHOD
FOR SIMILAR OBJECTS

Qiang Zhao1,2, Xijuan Guo1,2, Buying Zhang1,2 and Xinyu Bai3

1Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
2College of Information Science and Engineering

Yanshan University
No. 438, Hebei Ave., Qinhuangdao 066004, P. R. China

hmoe@vip.qq.com; xjguo@ysu.edu.cn
3Technical Center

Shenyang Aircraft Corporation
Shenyang 110850, P. R. China

Received February 2016; accepted May 2016

Abstract. Point cloud matching is much more difficult when an initial estimate of the
relative pose is not known. In order to reduce the effect of relative pose on matching
operation and improve the computing speed, this article presents a method to fast match
the pose of two similar objects through the covariance of their point cloud coordinates.
This paper contains three parts. In the first part, a matrix is constructed through the
values of point coordinates of one object and then a set of orthogonal vectors will be
obtained through eigenvector of the matrix. Rotation matrix will be obtained by comparing
the vectors of two similar objects. In the second part, a description of procedures is given
and the complexity of the algorithm is analyzed. In the last part, the experiment shows the
proposed method has high computing efficiency and the matching results are acceptable.
Keywords: Point cloud, Covariance matrix, Pose adjustment, Coarse matching

1. Introduction. 3D modeling, object detection, and pose estimation are three of the
most challenging tasks in the area of 3D computer vision. Most present recognition meth-
ods identify two objects through feature points and specific shape matching. The pose
estimation through unordered point-clouds has already been used in many fields, like
man face or industrial parts pose recognition. Barros et al. [1] presented a novel ap-
proach to estimate the human pose from a body-scanned point cloud. Figueiredon et al.
[2] proposed algorithms for 3D object recognition from 3D point clouds of rotationally
symmetric objects. Although it shortens the computing time, it can only recognize the
symmetric objects. Berner et al. [3] enhanced a probabilistic graph-matching approach
that detects objects by using 3D shape primitives with distinct 2D primitives such as cir-
cular contours. The method depends on a composition of shape primitives like cylinders,
planes, cones and spheres. Nguyen et al. [4] used point-pair feature for matching instead
of traditional approaches using local feature descriptors. The object model is a set of
point pair descriptors computed from CAD model.

Point cloud matching is a central problem in the pose estimation. Although the problem
is well studied in the case when an initial estimate of the relative pose is known (fine
matching), the problem becomes much more difficult when a priori knowledge is not
available (coarse matching). Guo et al. [5] reconstructed the model for a set of input point-
clouds in the presence of clutter and occlusion using a novel model growing technique.
The algorithm does not rely on any prior information about the objects in the scene, but it
needs a lot of computing. In order to speed up the matching process, many methods have
been presented. Diez et al. [6] introduced a novel technique to speed up coarse matching
algorithms for point clouds. Cheung et al. [7] reduced the problem to 3 dimensions using

2283

2284 Q. ZHAO, X. GUO, B. ZHANG AND X. BAI

contours computed from horizontal slices. However, the method only suits objects lying
stably on a planar surface.

Among so many methods, Fehr et al. [8] introduced various descriptors to match
features in a point cloud and proved covariance to be a successful method in point cloud
matching processing. However, covariance is used directly to look for features in point
clouds; therefore, the algorithm is complex and a lot of computing time is required. In
order to speed up the coarse matching process, this paper uses covariance to make two
objects have the same pose, which need to be recognized. The whole article is divided
into three parts. The principle of the coarse matching method is denoted in the first part.
Then, the algorithm based on the principle is given and the complexity of the program is
analyzed. At last, several similar 3D models are used to test the efficiency of the method.

2. Coarse Matching Principle. During object detection process, most matching meth-
ods need to find the corresponding features. That is difficult because the pose of objects
needed to be detected is uncertain. Therefore, many other methods take much time to
suppress interference caused by pose. The coarse matching method is designed to work
out a rotation matrix used to change the pose before the detection process.

In this paper, 3D point sets are the data to be processed. These elements of point sets
can be got from a 3D scanner or other equipments, and they also can be the points in 3D
models. The point coordinates are the only information required in the method.

2.1. Covariance matrix. The coarse matching between objects can be got through the
object contour, which can be obtained by the method of OBB (Oriented Bounding Box)
or convex hull. Because the convex hull is too complex and OBB requires polygons
information, a method only requiring the point coordinates is designed.

Similar to the OBB computation algorithm, the coarse matching method uses the first
and second order statistics to summarize the point coordinates. They are the mean, µ,
and the covariance matrix, C, respectively. If the ith point coordinate is the pi(xi, yi, zi),
then the mean and covariance matrix can be expressed as

µ =

 x̄
ȳ
z̄

 =
1

n

n∑
i=0

 xi

yi

zi

C =

1

n

n∑
i=0

 x2
i xiyi xizi

yixi y2
i yizi

zixi ziyi z2
i

where n is the number of points, xi = xi − x̄, yi = yi − ȳ, zi = zi − z̄.

The eigenvectors of a symmetric matrix, such as C, are mutually orthogonal. After
being normalized, they are used as a basis. Then the extremal points along each axis
of this basis are found. After the length of projection of the maximum and minimum
points on the axis of one basis is compared, the direction of this axis is defined to be
the direction of the point having longer projection. Finally, a set of vectors with new
direction is obtained, such as {u⃗, v⃗, w⃗}. Different from the OBB algorithm, the more the
points are, the more accurate the coarse matching method is.

2.2. Rotation matrix. If there are two objects named object 1 and object 2, the co-
variance matrices of two objects can be obtained after their point clouds are got, and
then their feature vectors can be computed by the upper subsection. Set the two sets of
feature vectors as {u⃗1, v⃗1, w⃗1} and {u⃗2, v⃗2, w⃗2} respectively. Then two pairs of correspond-
ing vectors are randomly selected to compute the rotation matrix. Rodrigues’ Rotation
Formula (RRF) is used to work out the rotation matrix; therefore, two rotation processes
are needed to be computed.

ICIC EXPRESS LETTERS, VOL.10, NO.9, 2016 2285

If object 1 is fixed, object 2 needs to be rotated to the same pose as that of object 1.
Then a pair of corresponding vectors u⃗1 and u⃗2 are used in the first rotation computation.
Based on the RRF, the included angle θ, and the rotation axis V⃗ can be expressed as

θ = arccos

(
u⃗1 · u⃗2

|u⃗1||u⃗2|

)

V⃗ =

 Vx

Vy

Vz

 =

 u2yu1z − u2zu1y

u2zu1x − u2xu1z

u2xu1y − u2yu1x

where u⃗1 = (u1x, u1y, u1z) and u⃗2 = (u2x, u2y, u2z). Set λ⃗ (λx, λy, λz) as the unit vector of

V⃗ , λ⃗ = V⃗ /|V⃗ |. Then the first rotation matrix R1
λ(θ) can be shown as R1

λ(θ) = cos θ + λ2
x(1− cos θ) λxλy(1− cos θ)− λz sin θ λy sin θ + λxλz(1− cos θ)

λz sin θ + λxλy(1− cos θ) cos θ + λ2
y(1− cos θ) −λx sin θ + λyλz(1− cos θ)

−λy sin θ + λxλz(1− cos θ) λx sin θ + λyλz(1− cos θ) cos θ + λ2
z(1− cos θ)

Then, u⃗1 = R1

λ(θ)u⃗2 can be known and the feature vector set {u⃗2, v⃗2, w⃗2} will be changed
into {R1

λ(θ)u⃗2, R
1
λ(θ)v⃗2, R

1
λ(θ)w⃗2} after the first rotation. Therefore, the v⃗1 and R1

λ(θ)v⃗2

are the corresponding vector pair used in the second rotation matrix computation process.
Set R1

λ(θ)v⃗2 to be v⃗r. Because the feature vectors are mutually orthogonal, the second
rotation angle and rotation axis are expressed as

θ = arccos

(
v⃗1 · v⃗r

|v⃗1||v⃗r|

)
V⃗ = u⃗1 = R1

λ(θ)u⃗2

The second rotation matrix R2
λ(θ) can be obtained by the same formula above. Finally,

the complete rotation matrix R = R2R1 is obtained.
Object 2 will be in the same pose with object 1 after each point in the point cloud of

object 2 is multiplied by the rotation matrix R at the left side.

3. Algorithm Description and Analysis. According to Section 2, an algorithm is
described to compute the rotation matrix and pseudocode is provided to analyze the
complexity of the algorithm. The point sets of object 1 and object 2 are the only input
parameters needed in this algorithm and a 3× 3 matrix R is the result.

Algorithm 1 rotation matrix computation

Procedure: Rotation-Matrix(P1, P2)
Input: point sets of two objects P1 and P2
Output: the rotation matrix R of object 2 to object 1
1. Compute covariance matrixes M1 and M2 based on Section 2.1

using the input parameters P1 and P2
2. V1 ← Jacobi-Eigenvectors(M1)
3. V2 ← Jacobi-Eigenvectors(M2)
4. Compute included angle A of corresponding vectors V1 [0] and V2 [0].
5. Compute cross product L of corresponding vectors V1 [0] and V2 [0].
6. Compute first rotation matrix R1 based on Section 2.2 using A and L.
7. V2 ← R1 × V 2
8. Compute included angle A of corresponding vectors V1 [1] and V2 [1].
9. Compute second rotation matrix R2 using A and V1 [0].
10. R ← R1 × R2
return R;

2286 Q. ZHAO, X. GUO, B. ZHANG AND X. BAI

In Algorithm 1, there is a procedure named Jacobi-Eigenvectors used to compute the
feature vectors of covariance matrixes. The algorithm is obtained according to the theory
of Jacobi matrix and the specific steps are described as Algorithm 2. Due to the special
nature of this paper, all the matrixes used in the algorithm are three factorial square
matrixes.

Algorithm 2 feature vectors computation

Procedure: Jacobi-Eigenvectors(M)
Input: 3× 3 covariance matrix M
Output: 3× 3 vectors matrix V , in which each column is a feature vector
1. circl ← 0
2. Initialize V as an identity matrix
3. while circl < num and M [row][col] < precision
4. circl + +
5. Find the position (row, col) of the maximum value

in matrix M except its diagonal
6. angle← 0.5 ∗ arctan(2 ∗M [row][col]/(M [row][row]−M [col][col]))
7. M [row][row]←M [row][row] ∗ cos(angle) ∗ cos(angle) + M [col][col]

∗ sin(angle) ∗ sin(angle) + M [row][col] ∗ cos(angle) ∗ sin(angle)
8. M [col][col]←M [row][row] ∗ sin(angle) ∗ sin(angle) + M [col][col]

∗ cos(angle) ∗ cos(angle)− 2 ∗M [row][col] ∗ cos(angle) ∗ sin(angle)
9. M [row][col]← 0.5 ∗ (M [col][col]−M [row][row]) ∗ sin(2 ∗ angle)

+M [row][row] ∗ cos(2 ∗ angle)
10. M [col][row]←M [row][col]
11. for i ← 0 to 2
12. if i ̸= col and i ̸= row
13. temp ← M [i][row]
14. M [i][row]←M [i][col] ∗ sin(angle) + temp ∗ cos(angle)
15. M [i][col]←M [i][col] ∗ cos(angle)− temp ∗ sin(angle)
16. for i ← 0 to 2
17. if i ̸= col and i ̸= row
18. temp ← M [row][i]
19. M [row][i]←M [col][i] ∗ sin(angle) + temp ∗ cos(angle)
20. M [col][i]←M [col][i] ∗ cos(angle)− temp ∗ sin(angle)
21. for i ← 0 to 2
22. temp ← V [i][row]
23. V [i][row]← V [i][col] ∗ sin(angle) + temp ∗ cos(angle)
24. V [i][col]← V [i][col] ∗ cos(angle)− temp ∗ sin(angle)
return V ;

In line 1 of Algorithm 1, the computation time is determined by the number n of point
sets and time spent on traversing all elements in point set is O(n). All the computation
in lines 4 to 9 of Algorithm 1 is obtained by one cycle and the spent time is O(1). Lines
2 and 3 of Algorithm 1 are shown as Algorithm 2, wherein the cycle index is determined
by the parameter num and precision. The smaller the precision is, the more cycle times
are. Therefore, the time spent on this algorithm is O(m) and m is the maximum cycle
times.

According to above analysis, the time spent in the coarse matching method is deter-
mined by the maximum value between m and n. Generally, the number of elements in
point set is large enough, and the accuracy can meet the requirements when m < 10.
Therefore, the whole time spent is O(n) and time complexity is acceptable.

ICIC EXPRESS LETTERS, VOL.10, NO.9, 2016 2287

4. Experiment and Analysis. Three airfoil 3D models are used in the algorithm ex-
periment. These three models are Airbus-A320, B747 and F16 respectively. Their point
clouds picked up from models are used as the input of Algorithm 1. As shown in Figure
1, there are two airbuses with different poses on the left of the figure and they are put
together on the top right. After the computation, they will be in the pose as shown on
the lower right.

When the objects are different, the coarse matching method is also useful. In Figure 2,
the pose of A320 is on the top left, the pose of B747 after computation will be shown on
the lower of the figure. The parameter precision in Algorithm 2 decides the differences
between the two lower poses. The two poses are much closer when the precision is much
higher.

Even though there is quite a difference between the two airfoils, like A320 and F16, the
matching result is still effective as shown in Figure 3.

Figure 1. The coarse matching process of two Airbus-A320

Figure 2. The coarse matching process between Airbus-A320 and B747

Figure 3. The coarse matching process between Airbus-A320 and F16

2288 Q. ZHAO, X. GUO, B. ZHANG AND X. BAI

Figure 4. The coarse matching between points from 3D model and 3D scanner

Number of points (log(n))
3 4 5 6 7

T
im

e
co

ns
um

pt
io

n(
m

s)

0

10

20

30

40

50

data from cite [1]
data from cite [6]

Figure 5. The relation between time consumption and number of points

This coarse matching method also can be used to match point clouds obtained through
3D scanner. As shown in Figure 4, the left point cloud is obtained from 3D model and the
middle one is obtained from 3D scanner. They are achieved from the same component of
an airfoil. All the figures of matching results are better than those in cite [6] and cite [9].

The efficiency of the algorithm only depends on the number of points. As shown in
Figure 5, the larger the number of points is, the more the time consumption is, and the
time consumption is almost the same when precision = 100 or precision = 1. According
to the data from cite [1] and cite [6], the time consumption is less than that in cite [1]
and cite [6] obviously. This further illustrates that the algorithm proposed in this paper
speeds up the coarse matching process.

5. Conclusion. A coarse matching method is proposed in this paper to adjust the pose
of objects through their point clouds. The method speeds up the matching process and
it can be extensively used for pose estimation of most objects. At last, the experiments
verify that the coarse matching results are acceptable and the time consumption is less
than other methods. In the future work, the efficiency of this method will be further
improved and it will be used in making wing skin and wing butt joint.

Acknowledgement. This work is supported by the Science and Technology Support of
Hebei Province under Grant No. 15211019D.

REFERENCES

[1] J. M. D. Barros, F. Garcia and D. Sidibe, Real-time human pose estimation from body-scanned
point clouds, The 10th International Conference on Computer Vision Theory and Applications,
Berlin, Germany, pp.553-560, 2015.

[2] R. P. de Figueiredon, P. Moreno and A. Bernardino, Efficient pose estimation of rotationally sym-
metric objects, Neurocomputing, vol.150, pp.126-135, 2015.

[3] A. Berner, J. Li, D. Holz et al., Combining contour and shape primitives for object detection and pose
estimation of prefabricated parts, The 20th IEEE International Conference on Image Processing,
Melbourne, Australia, pp.3326-3330, 2013.

ICIC EXPRESS LETTERS, VOL.10, NO.9, 2016 2289

[4] D. D. Nguyen, J. P. Ko and J. W. Jeon, Determination of 3D object pose in point cloud with CAD
model, The 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision, Mokpo, South
Korea, pp.1-6, 2015.

[5] Y. Guo, M. Bennamoun, F. Sohel et al., An integrated framework for 3-D modeling, object detection,
and pose estimation from point-clouds, IEEE Trans. Instrumentation and Measurement, vol.64, no.3,
pp.683-693, 2014.

[6] Y. Diez, J. Mart and J. Salvi, Hierarchical normal space sampling to speed up point cloud coarse
matching, Pattern Recognition Letters, vol.33, pp.2127-2133, 2012.

[7] E. C. H. Cheung, C. Chao and W. S. Newman, Initial pose estimation using cross-section contours,
IEEE International Conference on Robotics and Biomimetics, Bali, Indonesia, pp.878-883, 2014.

[8] D. Fehr, W. J. Beksi, D. Zermas et al., Covariance based point cloud descriptors for object detection
and recognition, Computer Vision and Image Understanding, pp.1-14, 2015.

[9] C. Torre-Ferrero, S. Robla, E. G. Sarabia et al., A coarse-to-fine algorithm for 3D registration based
on wavelet decomposition, WSEAS Trans. Systems, vol.7, no.7, pp.655-664, 2008.

