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Abstract. Conditions to ensure that the basis pursuit (BP) model has a unique solution
play a central role for exact sparse recovery. Based on the equivalence between the BP
model and the standard linear program, we derive a new necessary and sufficient condition
guaranteeing solution uniqueness for the BP model. Moreover, with this condition, we
provide an elementary proof to verify an existing uniqueness condition of solution for
exact sparse recovery. As a potential application, these conditions stimulate new methods
to construct test instances for BP models based on linear programming.
Keywords: Basis pursuit, Linear programming, Sparse recovery, Uniqueness condition

1. Introduction. Recovering an unknown approximately or exactly sparse vector x∗ ∈
Rn from its linear information Ax∗, where A is an m × n measurement/sensing matrix
with m ≤ n typically, is a core problem in many fields, including compressed sensing,
signal processing, and statistical learning. One of the most efficient models solving this
problem is the well-known BP model

minimize ∥x∥1

subject to Ax = Ax∗ (1)

which was introduced in [1] and has attracted lots of interest from researchers in the fields
mentioned above during the past two decades. There is a large literature on the solution
uniqueness conditions, i.e., when the minimizer to the BP model is unique and equal to
x∗. In this paper, by the equivalence between the BP model and the standard linear
programming model, we will derive a new necessary and sufficient condition for solution
uniqueness in the BP model, with which we further provide an elementary proof to verify
an existing uniqueness condition of solution in [2].

2. Main Results. Before stating our new solution uniqueness result, we introduce the
notation used throughout the paper.

For an m × n matrix A and a subset I ⊂ {1, · · · , n}, AI denotes the m × |I| matrix
with column indices in I, and Ic is the complement of I. Here | · | denotes the cardinality
for a set and the absolute value for a number. Particularly, A{i} denotes the i-th column

of A, also denoted by ai for simplicity. Likewise, for a vector v ∈ Rn, vI ∈ R|I| is the
restriction of v to indices in I. The vector ek will denote a vector of ones of dimension
k. For brevity we shall often omit mentioning the dimensionality of a vector or a matrix,
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when it is obvious from the context. The new solution uniqueness result can be stated as
follows.

Theorem 2.1. Let I := supp(x∗), I+ := {i : x∗
i > 0} and I− := {i : x∗

i < 0}. Then x∗ is
the unique minimizer of the BP model if and only if the following linear system(

AI+ ,−AI−

)T
y = ek + rp (2a)(

AIc
+
,−AIc

−

)T

y ≤ e2n−k + rq (2b)

has a solution (y, r) with r ∈ (0, 1] for each (p, q) with p ∈ Rk, q ∈ R2n−k.

With the above theorem, we will show that the following condition is also necessary
and sufficient for solution uniqueness in the BP model.

Condition 2.1. Under the definitions I := supp(x∗) ⊆ {1, . . . , n} and s := sign(x∗
I),

matrix A ∈ Rm×n has the following properties:

1) submatrix AI has full column rank, and
2) there is d ∈ Rm obeying AT

I d = s and ∥AT
Icd∥∞ < 1.

Theorem 2.2. Let I := supp(x∗). Then x∗ is the unique minimizer of the BP model if
and only if Condition 2.1 holds.

Condition 2.1 was first proposed in [2] together with a sufficiency proof for solution
uniqueness in the BP model by an approach based on Lagrange dual analysis. [3] considers
the BP model with complex-valued quantities and A equal to a down-sampled discrete
Fourier operator, for which it establishes both the necessity and sufficiency of Condition
2.1 to the solution uniqueness of the BP model. Their proof uses the Hahn-Banach
separation theorem and the Parseval formula. [4] lets the entries of matrix A and vector
x in the BP model have complex values and gives a sufficient condition for its solution
uniqueness. In the regularization theory, Condition 2.1 is used to derive linear error
bounds under the name of range or source conditions in [5], which shows the necessity
and sufficiency of Condition 2.1 for solution uniqueness of the BP model in a Hilbert-
space setting by a weak null space property and the duality theory. Recent papers [6, 7]
show that Condition 2.1 can be applied broadly not only to the BP model but also to the
following convex problems

min f1(Ax − b) + λ∥x∥1 (3)

min ∥x∥1, s.t. f2(Ax − b) ≤ σ (4)

min f3(Ax − b), s.t. ∥x∥1 ≤ τ (5)

where λ, σ, τ > 0 are scalar parameters and fi(x), i = 1, 2, 3 are strictly convex functions.
The Lasso problem [8] is a special case of problem (3) or (5) while the basis pursuit
denoising problem [1] is a special case of problem (4) all with fi(·) = 1

2
∥ · ∥2

2, i = 1, 2, 3.
By constructing the required dual variable in Condition 2.1 via the simplex method, [6]
proves that Condition 2.1 is necessary and sufficient for x∗ to be the unique solution of
the BP model or the convex models (3)-(5). Test instances for BP models are given in [9]
to fulfill Condition 2.1.

In this study, we first prove Theorem 2.1 and then prove the equivalence between the
solvability of (2) and Condition 2.1. Theorem 2.2 is, therefore, proved since the solvability
of (2) is necessary and sufficient for solution uniqueness, Moreover, by the equivalence
between the solvability of (2) and Condition 2.1, the solvability of (2) can also be applied
to the convex models (3)-(5). All the arguments in this paper are based only on linear
programming knowledge, so the proofs are elementary.
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3. Proof of Theorem 2.1. We need the following lemma which gives a necessary and
sufficient condition for the uniqueness of a solution to standard linear program. This
result was proved several times by applying the theorem of alternatives in [10, 11]. Here,
we give a direct proof.

Lemma 3.1. Consider the standard linear program:

minimize cT z

subject to Az = b, z ≥ 0 (6)

Assume that b ̸= 0. Let x∗ be a solution of (6) and denote S = {i : x∗
i = 0}. Then x∗ is

unique if and only if the linear system Ax = 0, cT x ≤ 0, xS ≥ 0, x ̸= 0 has no solution.

Proof: If the linear system has a solution denoted by x̂, it must be nonzero since the
constraint x ̸= 0. Consider x∗ + x̂. Obviously, x∗ + x̂ is a feasible point of (6) different
from x∗ and

cT x∗ ≤ cT (x∗ + x̂) = cT x∗ + cT x̂ ≤ cT x∗

where the first inequality is due to the fact that x∗ is a minimizer of (6) and the second
inequality follows from the constraint cT x̂ ≤ 0. Thus, cT x̂ = 0. Combining the feasibility
of x∗+ x̂, we conclude that x∗+ x̂ is also a solution to (6) which contradicts the uniqueness
of x∗.

Conversely, if x∗ is not the unique solution of (6), we can find a solution for the linear
system Ax = 0, cT x ≤ 0, xS ≥ 0, x ̸= 0. To do this, let x̂ be a solution of (6) different
from x∗ and consider x̂− x∗. It remains to check the constraints of the linear system one
by one. First, A (x̂ − x∗) = 0 since Ax∗ = Ax̂ = b. Second, cT (x̂ − x∗) = 0 since both
x∗, x̂ are the minimizers of (6). Third, x∗ − x̂ ̸= 0 since x∗ and x̂ are different from each
other. Finally, (x̂ − x∗)S = x̂S ≥ 0 due to the definition of S and the feasibility of x̂. �

Now, we can prove Theorem 2.1.
Proof: [Proof of Theorem 2.1] By letting Φ := (A,−A) and zT :=

(
uT , vT

)
, we begin

with a standard-form linear program which is an equivalent expression of the BP model

minimize eT
2nz

subject to Φz = b, z ≥ 0 (7)

By “equivalent”, we mean that one can obtain solution from each other by rules:

given z∗, obtain x∗ = u∗ − v∗ with
(
(u∗)T , (v∗)T

)
= (z∗)T

given x∗, obtain (z∗)T =
(
(u∗)T , (v∗)T

)
with u∗ = max(x∗, 0), v∗ = max(−x∗, 0).

Thus, by Lemma 3.1, x∗ is the unique minimizer of the BP model if and only if corre-
sponding linear system

Φz = 0, −eT
2nz ≥ 0, zH ≥ 0, z ̸= 0 (8)

has no solution, where H = {i : z∗i = 0} with z∗ being given by the rules above. We
rearrange the order of the columns of Φ and the entries of z based on the index set H and

get a rearranged matrix (ΦH , ΦHc) and a rearranged vector
(
zT

H , zT
Hc

)T
. Then the linear

system (8) can be equivalently described as

ΦHczHc + ΦHzH = 0 (9a)

−eT
|Hc|zHc − eT

|H|zH ≥ 0 (9b)

zH ≥ 0 (9c)(
zT

H , zT
Hc

)T ̸= 0 (9d)

By Mangasarian’s stable theorem of the alternative (Theorem 1, [10]), the linear system
(9) has no solution if and only if the following alternative linear system

ΦT
Hcy = −e|Hc| + rp (10a)
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ΦT
Hy ≥ −e|H| + rq (10b)

1 ≥ r > 0 (10c)

has solution (y, r) for each (p, q). Thus, the solvability of linear system (10) is a sufficient
and necessary condition for the BP model having the unique minimizer.

Now, we transform the linear system (10) into another equivalent form. We consider
the following rearrangement of Φ based on the index sets I+ and I−

Φ = (A,−A) →
(
AI+ , AIc

+
,−AI− ,−AIc

−

)
(11)

By the definition of H, since I = I+

∪
I−, we have |Hc| = |I+| + |I−| = |I| = k, |H| =

2n − |Hc| = 2n − k, and

ΦHc =
(
AI+ ,−AI−

)
, and ΦH =

(
AIc

+
,−AIc

−

)
(12)

With these notations, the solvability of the linear system (10) is equivalent to the following
linear system (

AI+ ,−AI−

)T
y = −ek + r0p (13a)(

AIc
+
,−AIc

−

)T

y ≥ −e2n−k + r0q (13b)

having solution (y, r) with r ∈ (0, 1] and each (p, q). The difference between linear systems
(10) and (13) lies in that we take the sparsity of x∗ into consideration. After multiplying
a negative sign on the both sides in above linear system and based on the arbitrariness of
(p, q), we conclude that the solvability of linear system (2) is equivalent to that of linear
system (13), which finishes the proof. �

4. Proof of Theorem 2.2. In this section, we will show the equivalence between Con-
dition 2.1 and the solvability of (2); thus, Theorem 2.2 is implied by Theorem 2.1. First,
let us show that the solvability of (2) implies Condition 2.1.

Proof: [Proof of the existence of vector d] In order to apply Theorem 2.1 to showing
the existence of d in Condition 2.1, we first transform the existence of vector d to the
solvability of a linear system. Since I = I+

∪
I−, AT

I d = sgn(x∗
I) can be written out more

detailedly, that is
aT

j d = 1 for j ∈ I+ and aT
j d = −1 for j ∈ I− (14)

In a matrix form, it means (
AI+ ,−AI−

)T
d = e|I| = ek (15)

For ∥AT
Icd∥∞ < 1, it can be equivalently written as

AT
Icd < e|Ic|, and − AT

Icd < e|Ic| (16)

That is
(AIc ,−AIc)T d < e2|Ic| (17)

Since I = I+

∪
I−, we have Ic ⊂ Ic

+ and Ic ⊂ Ic
−. Thus, we get a stronger linear inequality(

AIc
+
,−AIc

−

)T

d < e|Ic
+|+|Ic

−| = e2n−k (18)

in the sense that if d satisfies (18), it also satisfies (17). Therefore, the existence of d in
Condition 2.1 can be guaranteed by the solvability of the following linear system(

AI+ ,−AI−

)T
d = ek (19a)(

AIc
+
,−AIc

−

)T

d < e2n−k (19b)

The latter can be justified by taking p = 0, q > 0 in the linear system (2). �
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Proof: [Proof of the full column-rank of AI ] It suffices to show that (AI+ ,−AI−) is full
column-rank since (AI+ , AI−) has the same columns as AI . By the solvability of (13a),
there must exist y0 such that (AI+ ,−AI−)T y0 = ek by taking p = 0. Thus, the solvability
of (13a) guarantees the solvability of (AI+ ,−AI−)T y = p for each p ∈ Rk that immediately
implies the full column-rank of (AI+ ,−AI−). �

In the following, we will show that Condition 2.1 also implies the solvability of (2).
Proof: If Condition 2.1 holds, then there exists d ∈ Rm such that

(AI+ ,−AI−)T d = ek (20a)

(AIc
+
,−AIc

−
)T d < e2n−k (20b)

Since I = I+

∪
I−, it holds Ic

+ = I−
∪

Ic, Ic
− = I+

∪
Ic and I+

∩
Ic = ∅, I−

∩
Ic = ∅.

Thus, we have the following rearrangement(
AIc

+
,−AIc

−

)
→

(
−AI+ , AI− , AIc ,−AIc

)
(21)

By the full column-rank of AI in the first part of Condition 2.1, for each p ∈ Rk, there is
z such that (AI+ ,−AI−)T z = p. Now, let us consider y = d + rz; we will show this vector
is a solution of the linear system (2). In fact, since (AI+ ,−AI−)T y = ek + rp, it suffices

to show that for each q there exists r > 0 such that
(
AIc

+
,−AIc

−

)T

y ≤ e2n−k + rq, i.e.,(
AIc

+
,−AIc

−

)T

d + r
(
AIc

+
,−AIc

−

)T

z ≤ e2n−k + rq (22)

By the rearrangement (21), we see that
(
AIc

+
,−AIc

−

)T

d is composed by

(−AI+ , AI−)T d and (AIc
+
,−AIc

−
)T d

whose every entries are strictly less than one from (20b). Thus, we have
(
AIc

+
,−AIc

−

)T

d <

e2n−k. Hence, by taking r > 0 small enough, inequality (22) holds which completes the
proof. �

5. Conclusion. In this study, we derive a new necessary and sufficient condition for the
solution to the BP model, which is also the condition of exact sparse recovery. Seemingly,
the new condition is much more difficult to verify than the existing Condition 2.1 since
the former needs to check the solvability of a linear system for infinite pairs (p, q) while
the latter only needs to check the solvability of one linear system and the full column-
rank of AI . However, our theoretical analysis shows that both of them are actually
equivalent. Another contribution of this paper is an elementary proof for the sufficiency
and necessity of Condition 2.1 in guaranteeing that a given solution to the BP model is
the unique solution. The arguments in this paper only rely on the linear programming
knowledge. Therefore, following the spirit in [9], the solvability of (2) and Condition 2.1
may be applied to constructing test instances for BP models based on linear programming.
We leave this as a future work.
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