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Abstract. Uncertainties in many real-world problems mean that their parameters may
be specified as lying between lower and upper bounds. To deal with such uncertainties,
interval linear programming (ILP) problem is used which is a family of linear program-
ming problems (namely, characteristic problem). The problem of determining optimal
solution set of the ILP is a challenging problem. In most solving methods, given solution
space is either infeasible such as the best and worst cases (BWC), ILP, and two-step
method (TSM) or non-optimal such as modified ILP (MILP), enhanced ILP (EILP),
and improved TSM (ITSM). Although in some methods such as improved ILP (IILP)
and improved MILP (IMILP) given solution space is feasible and optimal, all feasible
and optimal solutions are not obtained. In this paper, by using basis stability, we first
find the constraints of the ILP which are active in all characteristic problems and then
obtain the solution set of the ILP which is both feasible and optimal. The results of two
numerical examples further indicated the feasibility and optimality of solutions of the ILP
models.
Keywords: Basis stability, Interval linear programming, Optimal solution set, Uncer-
tainty

1. Introduction. Many problems in real world have uncertain coefficients. These uncer-
tain coefficients have usually been converted to certain coefficients. Interval computations
of Alefeld and Herzberger [1] is a way for treating uncertainties in data measurements.
Instead of exact values we deal with real intervals.

An interval matrix is defined as AI =
[
A,A

]
=
{
A ∈ Rm×n| A ≤ A ≤ A

}
, where

A ≤ A. Center and radius matrices are defined as Ac = 1
2

(
A + A

)
, ∆A = 1

2

(
A − A

)
.

A special case of an interval matrix is an interval vector which is a one-column interval
matrix X =

{
X| X ≤ X ≤ X

}
, where X, X ∈ Rm. Interval arithmetic is defined in

[1, 2].
We review some definitions [2]. A system AIx = bI is said to be weakly (strongly)

feasible if some (each) system Ax = b with data satisfying A ∈ AI ,b ∈ bI is feasible.
In the same way we define weak and strong feasibility of a system of interval linear
inequalities AIx ≤ bI . A square interval matrix AI is called regular if each A ∈ AI is
nonsingular. A family of the ILP problems is defined as min {cTx : Ax ≤ (=≥)b,x ≥ 0},
where c ∈ cI ⊆ Rn, A ∈ AI ⊆ Rn×m, b ∈ bI ⊆ Rm and cI , AI and bI are interval sets.

Many researchers worked on the ILP problems. Some solving methods of interval linear
programming problems consist of BWC, ILP, MILP, EILP, ITSM, IILP, and IMILP.

In the best and worst cases (BWC) method proposed by Tong the ILP model has been
converted into two sub-models [3], the best and the worst sub-models which have the
largest and the smallest feasible spaces, respectively. A given point is feasible for the
ILP model if it satisfies the constraints of the best problem and it is optimal for the ILP
model if it is optimal for at least one characteristic model. The BWC method has been
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developed by Chinneck and Ramadan when the ILP model includes equality constraints
[4]. Huang and Moore proposed a new interval linear programming method (ILP) [5].

Although the BWC method introduces exact bounds for the values of the objective
function, it may result in infeasible decision variable spaces. Also, solution space given
by the ILP method is not absolutely feasible, so the modified ILP (MILP) and enhanced
ILP (EILP) methods have been proposed. In the MILP and EILP, by adding extra
constraints, we can obtain absolutely feasible solution space [6, 7]. The solution space
obtained through ITSM proposed by Wang and Huang [8] does not violate any constraints
by introducing extra constraints in the solving process.

In [9], the authors improved the MILP method (IILP and IMILP methods) such that
the obtained solution space is both feasible and optimal. In [10], the authors obtained
the optimal solution set for the ILP when the feasible solution components of the best
problems which have the largest feasible space, are positive. Therefore, if at least one
of the components of the feasible solutions of the best problem is zero, then using this
method for determining the optimal solution set of the ILP is useless.

In this paper, we find constraints of the ILP which are active in all characteristic
problems and hence we can obtain the optimal solution set of the ILP. Firstly, we convert
the ILP problem to a convex combination problem with coefficients 0 ≤ λj ≤ 1, 0 ≤ µij ≤
1 and 0 ≤ µi ≤ 1 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. If for all i, j, µij = µi = λj = 0,
then the best problem has been obtained (in case of minimization problem). We move
from the best problem towards the worst problem by tiny variations of λj, µij and µi from
0 to 1. Then we solve each of the obtained problems. All the optimal solutions form a
space that we call the optimal solution set of the ILP.

2. ILP, Convex Combination Problem and B-Stability. In this section, we review
the optimal value bounds of the ILP problem and then introduce the convex combination
problem. Also, we define basis stability and its conditions, under which, we confidently
determine the optimal solution set of the ILP.

2.1. ILP and convex combination problems. In this section, we define ILP and
convex combination problems.

Definition 2.1. An ILP problem is defined as

min z =
∑n

j=1[cj, cj]xj

s.t.
∑n

j=1[aij, aij]xj ≤ [bi, bi], i = 1, 2, . . . , m

xj ≥ 0, j = 1, 2, . . . , n.

(1)

We call problems (2) and (3) as characteristic version and convex combination problems
of (1):

min z1 =
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi, i = 1, 2, . . . , m

xj ≥ 0, j = 1, 2, . . . , n,

(2)

min z2 =
∑n

j=1

[
(1 − λj)cj + λjcj

]
xj

s.t.
∑n

j=1

[
(1 − µij)aij + µijaij

]
xj ≤ (1 − µi)bi + µibi, i = 1, 2, . . . , m

xj ≥ 0, j = 1, 2, . . . , n,

(3)

where cj ∈
[
cj, cj

]
, aij ∈

[
aij, aij

]
, bi ∈

[
bi, bi

]
and 0 ≤ λj ≤ 1, 0 ≤ µi ≤ 1, 0 ≤ µij ≤ 1

for i = 1, 2, . . . , m and j = 1, 2, . . . , n.

Lemma 2.1. Two problems (2) and (3) are the same.

Proof: The proof is straightforward.
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Theorem 2.1. [2] An interval system AIx ≤ bI , x ≥ 0 is strongly feasible if and only if
the system Ax ≤ b, x ≥ 0 is feasible.

Theorem 2.2. [2] An interval system AIx = bI , x ≥ 0 is weakly feasible if and only if
the system Ax ≤ b, Ax ≥ b, x ≥ 0 is feasible.

Theorem 2.3. [2] An interval system AIx ≤ bI , x ≥ 0 is weakly feasible if and only if
the system Ax ≤ b, x ≥ 0 is feasible.

Theorem 2.4. [3] Let xj ≥ 0 for all j, then for the interval inequality
∑n

j=1

[
aij, aij

]
xj ≤[

bi, bi

]
,
∑n

j=1 aijxj ≤ bi and
∑n

j=1 aijxj ≤ bi are the largest and smallest feasible spaces
respectively.

Theorem 2.5. [3] For ILP problem (1), the best and worst optimal values of the objective
function are obtained by solving the following problems, respectively.

min z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, 2, . . . , m, xj ≥ 0, j = 1, 2, . . . , n,

min z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, 2, . . . , m, xj ≥ 0, j = 1, 2, . . . , n.

The first and second sub-models are the best and worst cases (namely, BWC) respec-
tively.

Let AI and bI be an interval matrix and vector, respectively. For an interval linear
system AIx ≤ bI , we define S = {x|Ax ≤ b, A ∈ AI ,b ∈ bI}.

Definition 2.2. The narrowest interval vector containing the set S is called the interval
hull of S.

S is generally not an interval vector. It is usually difficult to describe S. Since S
is generally so complicated in shape, it is usually impractical to use it. Instead, it is
a common practice to seek the interval vector xI containing S which has the narrowest
possible interval components [11].

2.2. Basis stability. One of the essential points in the ILP problems is basis stability.
Fundamental questions with ILP such as calculating the optimal solution set may be com-
putationally very expensive. However, by exploiting basis stability, the question becomes
much easier to solve, so we obtain all possible solutions and optimal values range; hence
the optimal solution set of the ILP problems will be a subset of the optimal solutions
generated by B-stability [12, 13].

Definition 2.3. [13] The problem min{cTx : Ax = b,x ≥ 0} where c ∈ cI ⊆ Rn,
A ∈ AI ⊆ Rm×n and b ∈ bI ⊆ Rm, is called B-stable with basis B if B is an optimal
basis for each characteristic problem. The ILP problem is called [unique] non-degenerate
B-stable if each characteristic model has a [unique] non-degenerate optimal basic solution
with the basis B.

Let B ⊆ {1, 2, . . . , n + m} be an index set such that AB is non-singular, where AB

denotes the restriction of A to the columns indexed by B. Similarly, N = {1, 2, . . . , n +
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m}\B stands for non-basic variables and AN denotes the restriction to non-basic indices.
The problem with center values is quite specific and not an arbitrary characteristic model.

In general, B-stability conditions have been presented in [12, 13]. These conditions are
as follows:

(1) (regularity) AB is regular.
(2) (feasibility) The solution set of the interval system ABxB = b is non-negative.
(3) (optimality) AB is optimal, i.e., cT

N − cT
BA−1

B AN ≥ 0T .

Theorem 2.6. [14] If ρ (|(Ac
B)−1|∆AB

) < 1, then AB is regular, where ρ(.) denotes the
spectral radius and ∆AB

and Ac
B are the radius and center of the interval matrix AB,

respectively.

Theorem 2.7. [14] If max1≤i≤n (|(Ac
B)−1|∆AB

)ii ≥ 1, then AB is not regular.

Theorem 2.8. [15] If the interval vector r is an enclosure to the solution set of system
ABxB = b, then:

ri = min

{
−x∗

i + (xc
i + |xc

i |) Mii,
1

2Mii − 1
(−x∗

i + (xc
i + |xc

i |)Mii)

}
,

ri = max

{
x∗

i + (xc
i − |xc

i |) Mii,
1

2Mii − 1
(x∗

i + (xc
i − |xc

i |)Mii)

}
,

where

M =
(
I − |(Ac

B)−1|∆AB

)−1
, xc = (Ac

B)−1bc, x∗ = M
(
|xc| + |(Ac

B)−1|∆b

)
,

and Ac
B is non-singular and ρ (|(Ac

B)−1|∆A) < 1.

Theorem 2.9. [12] Let diag(q) denote the diagonal matrix with entries q1, . . . , qm. If for
each q ∈ {±1}m, the solution set of system

(
(Ac

B)T − (∆AB
)T diag(q)

)
y ≤ cB

−
(
(Ac

B)T + (∆AB
)T diag(q)

)
y ≤ −cB

diag(q)y ≥ 0

(4)

lies in the solution set of system{ (
(Ac

N)T + (∆AN
)T diag(q)

)
y ≤ cN

diag(q)y ≥ 0.
(5)

then, the optimality condition holds.

3. Optimal Solution Set of the ILP with a New Approach. An optimal solution
set of the ILP is defined as the set of all optimal solutions of the characteristic problems.

In [10], the authors prove that the optimal solution set of the ILP is equal to the
intersection of the space generated by the best problem constraints and the worst problem
constraints with the inverse sign, when all feasible solution components of the best problem
are positive. Since checking this assumption is difficult, then we use basis stability to
determine the optimal solution set of the ILP problem. Firstly, by using basis stability,
we find the constraints of the ILP which are active in all characteristic problems and then
we obtain the optimal solution set of the ILP.

Remark 3.1. Since there are no dependencies, the constraints Ax ≤ b, x ≥ 0 are
equivalent to Ax + Iy = b, x,y ≥ 0. The unwanted extra interval width is called the
dependence problem or simply dependence [11].

Definition 3.1. For each i = 1, 2, . . . ,m, we define Si =
{
x :
∑

j∈B aijxj ≥ bi

}
, and

Ti =
{
x :
∑

j∈B aijxj ≤ bi

}
, where B is an index set corresponding to basis variables.
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Theorem 3.1. Let ILP model (1) be unique non-degenerate stable with basis B and
N = {1, 2, . . . , n + m} \ B. The optimal solution set of the ILP model is equal to (

∩m
i=1 Ti)

∩
(
∩m

i=1 Si) ,
xj > 0, j ∈ B
xj = 0, j ∈ N

Proof: Let x∗ be optimal solution of model (2) such that cj ∈
[
cj, cj

]
, aij ∈

[
aij, aij

]
and bi ∈

[
bi, bi

]
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Since the ILP model is unique

non-degenerate B-stable, then
∑

j∈B aijx
∗
j = bi, x∗

j > 0 for j ∈ B and x∗
j = 0 for j ∈ N .

Therefore, for each i = 1, 2, . . . , m,∑
j∈B

aijx
∗
j ≤

∑
j∈B

aijx
∗
j = bi ≤ bi,∑

j∈B

aijx
∗
j ≥

∑
j∈B

aijx
∗
j = bi ≥ bi.

So, for each i = 1, 2, . . . , m, x∗ ∈ Ti and x∗ ∈ Si. Therefore, x∗ ∈
∩m

i=1 Ti and x∗ ∈∩m
i=1 Si, and hence x∗ ∈ (

∩m
i=1 Ti)

∩
(
∩m

i=1 Si). Conversely, suppose x∗ ∈ (
∩m

i=1 Ti)
∩

(
∩m

i=1 Si) ,
x∗

j > 0, j ∈ B
x∗

j = 0, j ∈ N

so for each i = 1, 2, . . . , n, x∗ ∈ Si and x∗ ∈ Ti; therefore, for i = 1, 2, . . . , m,
∑

j∈B aijx
∗
j

≥ bi,
∑

j∈B aijx
∗
j ≤ bi, which gives,∑

j∈B

(
ac

ij + ∆aij

)
x∗

j ≥ bc
i − ∆bi

,
∑
j∈B

(
ac

ij − ∆aij

)
x∗

j ≤ bc
i + ∆bi

,

therefore

−

(∑
j∈B

∆aij
x∗

j + ∆bi

)
≤
∑
j∈B

ac
ijx

∗
j − bc

i ≤
∑
j∈B

∆aij
x∗

j + ∆bi
,

then ∣∣∣∣∣∑
j∈B

ac
ijx

∗
j − bc

i

∣∣∣∣∣ ≤∑
j∈B

∆aij
x∗

j + ∆bi
i = 1, 2, . . . , m.

We define y ∈ Rm by

yi =

{ ∑
j∈B ac

ijx∗
j−bc

i∑
j∈B ∆aij x∗

j +∆bi

∑
j∈B ∆aij

x∗
j + ∆bi

> 0

1
∑

j∈B ∆aij
x∗

j + ∆bi
= 0,

for i = 1, 2, . . . , n. Then |yi| ≤ 1 and for i = 1, 2, . . . , m,
∑

j∈B ac
ijx

∗
j − bc

i = yi

(∑
j∈B

∆aij
x∗

j + ∆bi

)
; therefore,

∑
j∈B

(
ac

ij − yi∆aij

)
x∗

j = bc
i + yi∆bi

. Since |yi| ≤ 1, a◦
ij =

ac
ij − yi∆aij

∈
[
aij, aij

]
and b◦i = bc

i + yi∆bi
∈
[
bi, bi

]
. Therefore, x∗ is a feasible solution

of model (2) such that a◦
ij ∈

[
aij, aij

]
and b◦i ∈

[
bi, bi

]
. Now, consider the following

characteristic model:

min
n∑

j=1

c◦jxj

s.t.
∑
j∈B

a◦
ijxj ≤ b◦i , i = 1, 2, . . . ,m,

xj ≥ 0, j ∈ B,

(6)
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where c◦j ∈
[
cj, cj

]
is arbitrary, for j = 1, 2, . . . , n. Note that x∗ is a feasible solution of

the model (6), since for i = 1, 2, . . . , m,
∑n

j=1 a◦
ijx

∗
j = b◦i . For optimality x∗, consider the

dual of the model (6):

max
m∑

i=1

b◦i ui

s.t.
m∑

i=1

a◦
ijui ≥ c◦j , j ∈ B,

ui ≥ 0, i = 1, 2, . . . , m.

Since the ILP model is non-degenerate B-stable, then the optimal solution components
of model (6) are positive, and for each j ∈ B, c◦j =

∑m
i=1 a◦

iju
∗
i , where u∗

i is the optimal
solution of the dual model. Therefore, c◦ =

∑m
i=1 u∗

i a
◦
i , and the objective function gradient

c◦ has been presented as a non-negative linear combination of the gradients of the active
constraints at x∗ (i.e., a◦

1, a
◦
2, . . . , a

◦
m), and hence, in view of the Karush-Kuhn-Tucker

optimality conditions, x∗ is the optimal solution of model (6).

Corollary 3.1. If m = n and all feasible solution components of the best problem which
has the largest feasible space are positive, then x∗ is an optimal solution of the ILP if and
only if

∑n
j=1 aijx

∗
j ≥ bi,

∑n
j=1 aijx

∗
j ≤ bi, which has been proved in [10].

4. Examples. In this section, we solve two examples. Firstly, all active constraints in
ILP model are found, and then the optimal solution set is obtained.

Example 4.1. Consider the following ILP problem:

min z = [1, 5]x1 + [3, 4]x2

s.t. [0.5, 1]x1 + [−2,−1]x2 ≤ [−1, 0]

[−4,−3]x1 + [0, 1]x2 ≤ [−3,−2]

x1, x2 ≥ 0.

Let x3 and x4 be the slack variables of the constraints. A candidate basis for B-stability
is B = (1, 2), since it is optimal for characteristic problem with center values.

1) According to Theorem 2.6, the spectral radius is 0.57, so AB =

(
[0.5, 1] [−2,−1]

[−4,−3] [0, 1]

)
is regular.
2) According to Theorem 2.8, an enclosure to the solution set of ABxB = b is xB =(

[0.15, 2]
[0, 3]

)
which is non-negative.

3) According to Theorem 2.9, the solution set of system (4) lies in the solution set of
system (5) for each q ∈ {±1}2. Thus the problem is B-stable.

The best and worst values of the objective function is 7
8

and 22, respectively. The

optimal solutions are x∗ =

(
0.5

0.125

)
and x∗ =

(
2
3

)
.

We solve the convex combination problem for some values of λj, µi and µij for i, j = 1, 2
in [0, 1]. All optimal solution points lie in solution space of the ILP where some of the
points have been shown in Figure 1. Since m = n = 2 and for each j = 1, 2, x∗

j , x∗
j > 0,

then in view of Corollary 3.1, the optimal solution set is shown in Figure 2 which is the
same as Figure 1. The solution spaces obtained through BWC and our method have been
shown in Figure 3. By comparing these methods, we conclude that in the solution space
resulting from BWC, there are infeasible solutions.



ICIC EXPRESS LETTERS, VOL.11, NO.1, 2017 23

Figure 1. Approxination of the optimal solution space for the ILP problem
of Example 4.1

Figure 2. The optimal solution set for the ILP problem of Example 4.1

Figure 3. The solution spaces of BWC and our methods for Example 4.1

Example 4.2. Consider the ILP problem as follows:

min z = [−2,−1]x1 + x2

s.t. [2, 3]x1 + x2 ≤ [3, 4]

x1 + [1, 2]x2 ≤ [2, 3]
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x1, x2 ≥ 0.

Let x3 and x4 be the slack variables of the constraints. A candidate basis for B-stability
is B = (1, 4), since it is optimal for the best problem as characteristic problem.

1) According to Theorem 2.6, the spectral radius is 0.2, so AB =

(
[2, 3] 0

1 1

)
is regular.

2) According to Theorem 2.8, an enclosure to the solution set of ABxB = b is xB =(
[0, 3]
[0, 4]

)
which is non-negative.

3) According to Theorem 2.9, the solution set of system (4) lies in the solution set of
system (5) for each q ∈ {±1}2. Thus the problem is B-stable.

The best and worst values of the objective function are −4 and −1 respectively. The

optimal solutions are x∗ =

(
2
0

)
and x∗ =

(
1
0

)
. If we solve above problem for different

values of λj, µi and µij in [0, 1], then all optimal solution points form solution space of

Figure 4. Some solution points for the ILP problem of Example 4.2

Figure 5. The optimal solution set for the ILP problem of Example 4.2
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the ILP. Some of the points are shown in Figure 4. According to Theorem 3.1, we obtain
the optimal solution set by solving the system 2x1 + 0x4 ≤ 4, x1 + x4 ≤ 3

3x1 + 0x4 ≥ 3, x1 + x4 ≥ 2
x1, x4 > 0, x2 = x3 = 0,

to be 1 ≤ x∗
1 ≤ 2, and x∗

2 = 0, which is shown in Figure 5.

5. Conclusion. In this study, solving interval linear programming (ILP) problems is
considered. In all solving methods of the ILP, optimal solutions cannot be completely
obtained, such as BWC, ILP, MILP, and ITSM. Although the best and worst cases (BWC)
method produces the best and worst optimal values, it results in infeasible space. In the
BWC, the ILP model converts to two submodels, the best and worst submodels. In the
ILP method, it is possible that the problem is not absolutely feasible, so the MILP, EILP
and ITSM methods have been proposed. In these methods, by adding extra constraints,
absolutely feasible solutions are obtained, but we lose some optimal solutions.

We first find the active constraints in all characteristic models of the ILP, and then
obtain the optimal solution set of the ILP by using the constraints of the best and worst
submodels. Two numerical examples further verified the effectiveness of the proposed
method.

Further research will focus on other methods for obtaining the optimal solution set of
the ILP models without considering the basis stability.
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