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ABSTRACT. An advancement of brain-computer interface (BCI) has grown the demand
for real-time EEG signal analysis. A lifting scheme method is used to reveal the electrical
activity of the brain in terms of the frequency characteristics of high and low-frequency
component changes from different recording regions and from different physiological and
pathological brain states. We examined the set of intracranial EEG data with the eye
open from epilepsy patient during the seizure in time series. It is possible to determine a
nonlinear prediction of EEG signal in the spectral domain. We compared the frequency
spectrum of the averaged raw FEG data, predicted and detailed EEG data. Results are
distinguished between predicted and detailed EEG signal of the brain state using lifting
scheme.

Keywords: Brain computer interface (BCI), Wavelet decomposition, Lifting scheme,
Electroencephalogram (EEG)

1. Introduction. The brain-computer interface (BCI) has been associated with the EEG
signal features and system. The extraction of EEG features is necessary to provide valu-
able information to the automated and semi-automated systems, which helps in many
applications on a real-time basis. It is also very popular for brain activities tool for
clinical purpose and used for military medicine, advancements in biometric fields. The
electrical brain activity can be inferred from different regions, different physiological and
pathological brain states by placing electrodes on the surface of the scalp [1]. The poten-
tial measured from electrodes are used to classify the brain activity. They are represented
by highly complex, non-stationary and nonlinear biological systems. The separation of a
signal into their components is a great interest in these applications. The linear and non-
linear EEG signal processing methods would be used to distinguish or predict these brain
activities. Therefore, time-frequency methods show the promising result [2]. The signal
feature extraction methods use linear analysis in time-frequency domains such as fast
Fourier transform (FFT), discrete wavelet transform (DWT), and eigenvectors [3]. The
nonlinear methods such as principal component analysis (PCA), independent component
analysis (ICA), and blind source separation (BSS) [4] have been studied to extract the
target components from the raw EEG signals. Wavelets, PCA and ICA are still hot topics
for the decomposition but still have limitations. PCA and ICA based methods are used to
decompose the recorded data as off-line analysis. It also depended on the independence
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of signals, while the sparsity is recently highlighted and this concepts effectively provide
a representation in the linear analysis to be treated as mixed signals.

Wavelet based approaches have high expectations for online EEG signal decomposition
with less computational costs and preserve time-frequency characteristics in the raw EEG
signal to a maximum extent. The design of wavelet function has a set of restrictions to
decomposition of raw EEG signal accurately [3, 5]. Shifts and dilation of a mother wavelet
function has generated a series of orthogonal spaces. However, wavelets have been used
to analyze the EEG signals both in frequency and time domain at a different level. The
wavelets analysis has multi-resolution capability benefit over Fourier transform and cosine
transform. The different families (Daubechies, Coiflets, and Symlets) in discrete variant
have been used for classification of feature components [6, 7]. The wavelet function design
has a complex issue, working with wavelet transform. The speed and accuracy of feature
extractions from EEG signals are the critical issues in many applications and wavelet as
temporal-spectral analysis of EEG method has been discussed as a solution for unstable
signals if the mother wavelet has not introduced appropriately. The wavelet function does
not categorize the EEG signal features accurately. Without accurate models, the nonlinear
biological system applications of classical parametric and nonparametric signal process-
ing methods based on stationary assumptions often fail to provide satisfactory results.
The conventional convolution based implementation of the DWT has high computational
complexity and memory requirements.

The fractal dimension of feature extraction on real-time bases in EEG signal such as
detection of dementia, seizure onset detection in epilepsy and much more is today needs.
The objective of this study is to analyze the specific characteristics of EEG signal taken
from different physiological and pathological brain states in a time domain using lifting
scheme. We used the lifting scheme to extract the features in a time domain. The lifting
scheme offers the sufficient information to illustrate signal. The paper is organized as
follows. The lifting scheme is explained in Section 2. Description of the EEG data and
how the lifting scheme extracts features are presented in Section 3. Results are given in
Section 4. The conclusions are presented in Section 5.

2. Lifting Scheme. The lifting scheme [8] was presented by Sweldens as a method for
building second generation wavelets with some desired properties. It was originally devel-
oped to adjust wavelet transforms to complex geometries and irregular sampling leading.
A lifting scheme is called a second generation method to build or realize as temporal-
spatial domain, and offers a simple framework to design accurate model based on the
requirement of the application [9, 10]. The lifting scheme relies on utilizing the spatial
domain correlation to build second generation wavelets that do not shift and translate
as in the first classical multiresolution-based wavelets. The local spatial interpretation is
used to adapt the transform for the non-linear signal. Therefore, it is possible to con-
struct and implement bi-orthogonal wavelets [11]. The feature extraction based on lifting
scheme has been well established in image processing [12] and less work is done in EEG
signal analysis. The lifting scheme has provided a wavelet-like decomposition of signals
to extract the features. It requires less time and simplifies the computation mechanism
and it is suitable for real-time applications. The lifting scheme is capable of handling
data where Fourier analysis is not suitable or information is not available because it can
be implemented in spatial or time domain. A lifting scheme is comprised of three steps
and the basic steps are given below.

e Split: A signal is separated into its disjoint even and odd coefficients.

e Predict: In predict step, we predict the odd coefficients from the adjacent even
coefficient. It can be considered as high frequency or detail coefficients of the signal.

e Update: The even coefficients as an approximation transform into low pass filter and
smoother compared to the previous scale.
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3. EEG Data and Methodology. The EEG data was obtained from the dataset men-
tioned in the paper of Andrzejak et al. [1] in 2001 and applied the lifting scheme for
extraction of the EEG signal features effectively. These data were recorded from five
healthy volunteers using a standardized electrodes placement arrangement. We consider
one segment set, and this set belonged to volunteers when they were relaxed in an awake
state with an eye open. The EEG data set comprised 100 single channel of 23.6 sec dura-
tion. These segments were selected and cut out from various multichannel EEG recording
after visual inspection for artifacts, e.g., due to muscle activity or eye movements. EEG
data were recorded with 128 channel amplifier system. Each trial having 4096 samples
was chosen in such a way that the potential difference of first and last sample was within
the range of potential difference of successive sample and the slope had the same phase.
Therefore, these recorded data were analyzed to extract the distinctive features using the
lifting scheme. Firstly, the EEG signal (S) has split into its even and odd index coefficients
se(n) and s,(n) respectively shown in Figure 1.

So(n) Detail Coefficients

- —

EEG (S5, ] Split Predict (h) Update (k)

%_ Approximation Coefficients
Se (n) -

FIGURE 1. Lifting scheme block diagram consisting of three steps: 1) splits,
2) predict, 3) update

The even and odd coefficients are given by s.(n) = s(2n) and s,(n) = s(2n + 1). By
using lifting scheme, the odd coefficients s, would be predicted from adjacent s.. The
predictor for odd coefficients s, is the average of its two neighboring even coefficients s,
and sg,41. Therefore, the even samples are used as predictor for the odd set. The predict
step can be considered as high frequency or detail coefficients. It is given by Equation
(1).

Bi—1(n) = so — h X s¢ (1)

The wavelet coefficient (3, is the difference between the exact sample and its predicted

value. o s
2n - 2n+1 (2)
where h is the predict operator. Here, we have considered wavelet filters such as the
popular ‘Cohen-Daubechies-Feauveau 9-7 (CDF9-7)" or ‘cubic B-splines 5-3 (spl5-3)’ [10,
13]. The filter coefficients given below are used for decomposition of EEG signal, in case
nonlinear A = 1.586134342, —0.05298011854, —0.8829110672, 0.4435068522, 1.149604398;
and linear h = %, }1
In the third step, the even coefficients have been considered as approximation coeffi-
cients of the raw EEG signal that become smoother signal and are used to recover the
raw EEG signal. The even coefficients s, have been found as s,, = s.. After this,
signal viewed as low pass filtering containing less high frequency components and the
approximation coefficients was given by Equation (3)

a;(n) = se(n) + U x B;1(n) (3)

where U is the update operator. The even coefficients have been obtained by sub sampling;
therefore, the aliasing effect has taken place. To reduce this U update operator is used

5 = S2n4+1 —
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to smooth the signal [14]. This process of computing a prediction and recording is called
lifting steps. The EEG signal has been decomposed into number of ‘5’ level of interest
that can be considered as power frequency band, which is given by n = 27, where n is the
number of samples.

4. Results. The lifting scheme is used to decompose EEG signals. These EEG signals
are taken when eye was open at awake state as discussed in Section 3. EEG signals are
decomposed at 8 and 11 levels of interest that can be considered as power peaks appearing
at a 10 and 50 Hz of frequency. Figure 2 shows the extracted approximation and detail
coefficients of EEG signal at levels 8 and 11 by using linear ‘spl5-3’.

Similarly, nonlinear ‘CDF9-7’ filter coefficients are used for decomposition as shown in
Figure 3. We used the translation invariant; therefore, the samples size is the same as
raw EEG signal. We considered all 100 single channels for analysis.

The extracted approximation and detail coefficients of EEG signals with nonlinear filter
coefficients demonstrate the better results as compared to the linear filter coefficients. The
redundancy (detail coefficients) of lifting method showed much more temporal-spatial
information at each extracted level.

Figure 4 and Figure 5 demonstrated the power-frequency relation for the raw and
(approximation coefficients, detail coefficients) EEG signals at different decomposition
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FIGURE 2. An example of an EEG signal decomposition by ‘spl5-3’ filter
coefficients: a) decomposition level = 8, b) decomposition level = 11
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FiGURE 3. An example of an EEG signal decomposition by ‘CDF9-7 filter
coefficients: a) decomposition level = 8, b) decomposition level = 11
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FIGURE 4. An averaged power spectrum of raw, approximation and de-
tail coefficients from 100 EEG signals decomposed by linear ‘spl5-3’ filter
coefficients at: a) decomposition level 8, b) decomposition level 11
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FIGURE 5. An averaged power spectrum of raw, approximation and detail
coefficients from 100 EEG signals decomposed by nonlinear ‘CDF9-7" filter
coefficients at: a) decomposition level 8, b) decomposition level 11

levels. The tendency of the power spectrum (peak at particular frequency range) can be
easily detected. This type of tendency is difficult to find with discrete wavelets. In a
case of approximation coefficients of signal, the power spectrum peak disappears as we
reduced the level of EEG signal decomposition.

Figure 6(a) showed the exact difference between averaged approximation coefficients of
EEG signals. It is confirmed by averaged power spectrum shown in Figure 6(b).

5. Conclusions. This study demonstrated lifting scheme method is used to decompose
the EEG signal with linear and nonlinear coefficients. The linear ‘cubic B-splines 5-3" and
non-linear ‘Cohen-Daubechies-Feauveau 9-7" filter coeflicients are used as lifting operator
for decomposition of the EEG signals to get the targeted frequency range of EEG signals.
The lifting scheme method may be used for removing the artifacts present in the EEG
signal. The lifting operator inherits the property of (low and high) filtering that of initial
filter possessed. The lifting scheme method provides more precise information in EEG
analysis. This method further may be used for real-time EEG analysis by making hardware
device. It does not use high computation memory; basically, it is worked on signal division
approach. Therefore, lifting scheme method may apply for real-time EEG analysis.
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FIGURE 6. a) A comparison between an approximation coefficients of EEG
signal decomposed at 11 level by linear and nonlinear filter coefficients re-
spectively; b) power spectrum of approximated EEG signals decomposed by
nonlinear ‘CDF9-7’, linear ‘spl3-5 filter coefficients and difference between
them
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