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Abstract. Multi-target tracking (MTT) is widely applied in many surveillance systems.
To efficiently select existence probability and adaptively correct under-estimated number
of targets, an improved cardinality balanced multi-target multi-Bernoulli (CBMeMBer)
filter is presented in this paper. Employing the adaptive target birth intensity method, we
design the novel CBMeMBer filter and optimize its particle implementation. Numerical
study results confirm validity and efficiency of the proposed filter.
Keywords: Multi-target tracking, CBMeMBer filter, Particle implementation, Cardi-
nality

1. Introduction. The goal of multi-target tracking (MTT) is to jointly estimate the
number of moving targets and their states from noise-corrupted measurements. By mod-
elling target states and measurements as the random finite set (RFS), Vo et al. proposed
the cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter as a tractable
approximation to the Bayes recursion for the MTT [1]. This kind of filter can complete
reliable and inexpensive extraction of state estimates without data association.

So far, some scholars have researched the CBMeMBer filter and many articles have
been published in important journals [2-7]. In [2], the particle implementation of the
CBMeMBer filter more efficient than the traditional RFS filters, was proposed in detail.
Subsequently, a novel CBMeMBer filter in [3] was presented to offer statistical frame in up-
date step. [4] represented a proposed filter for the Poisson extended-target measurement
models. However, the effectiveness of them needs to be improved. In [5], a particle imple-
mentation was discussed to improve the accuracy of distributions. Further, [6] corrected
the posterior cardinality by modifying the legacy rather than the measurement-updated
parameters. Recently, a CBMeMBer filter combined degenerate unmixing estimating
technique has been applied in moving speaker tracking [7]. Nevertheless, it is not obvi-
ous to choose the existence probability of newborn targets in the above filters that have
inherited the defect of under-estimated number of targets.

In this paper, an improved CBMeMBer filter and its particle implementation are ex-
plored. We mainly propose adaptive target birth intensity method to obtain the existence
probability of newborn targets and then correct target number estimates. The rest of this
note is organized as follows. In Section 2, the standard CBMeMBer filter is analyzed. Sec-
tion 3 presents the filtering principle and particle implementation of the proposed filter in
detail. In Section 4, the numerical study validates tracking performance of the proposed
filter. Section 5 draws the conclusion by providing the future work.

2. Problem Formulation. Assume the single Bernoulli RFS X(i) in the space X ⊆ Rnk

has the existence probability r of being a singleton whose component is distributed based
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on the probability density p, then the probability density of the Bernoulli RFS is defined
by:

π(X(i)) =

{
1− r, X(i) = Ø
rp(xi), X(i) = {xi}

(1)

Due to the multi-Bernoulli RFS X in X combined with a fixed number of the indepen-
dent X(i), i.e., X = ∪M

i=1X
(i), the related probability density can be written as:

π(X) =



M∏
i=1

(
1− r(i)

)
, X = Ø

M∏
i=1

(
1− r(i)

) ∑
1≤j1 ̸=···̸=jn≤M

n∏
i=1

r(ji)p(ji)(xi)
/ (

1− r(ji)
)
, X = {x1, . . . , xn}

(2)

To simplify, we use π =
{(
r(i), p(i)

)}M

i=1
to represent (2) with the cardinality

∑M
i=1 r

(i).

Assume the posterior multi-target density is πk−1 =
{(
r
(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
, then the pre-

dicted density can be written as πk|k−1 =
{(
r
(i)
P,k|k−1, p

(i)
P,k|k−1

)}Mk−1

i=1
∪
{(
r
(i)
Γ,k, p

(i)
Γ,k

)}MΓ,k

i=1
,

where Mk−1 is the number of survival hypothesized tracks at time k − 1 and MΓ,k is the
number of newborn hypothesized tracks at time k. Given the existence probability pS,k

and transition density fk|k−1 (x|·), we have the predicted parameters based on the inner
product ⟨·, ·⟩:

r
(i)
P,k|k−1 = r

(i)
k|k−1

⟨
p

(i)
k−1, pS,k

⟩
(3)

p
(i)
P,k|k−1 =

⟨
fk|k−1(x|·), p(i)

k−1pS,k

⟩/⟨
p

(i)
k−1, pS,k

⟩
(4)

Suppose that the total number of predicted hypothesized tracks is Mk|k−1 = Mk−1 +

MΓ,k, then the posterior density is πk =
{(
r
(i)
L,k, p

(i)
L,k

)}Mk|k−1

i=1
∪ {(rU,k(z), pU,k(·; z))}z∈Zk

.

Based on the detection probability pD,k, we have the updated parameters as follows:

r
(i)
L,k = r

(i)
k|k−1

(
1−

⟨
p

(i)
k|k−1, pD,k

⟩)/(
1− r(i)

k|k−1

⟨
p

(i)
k|k−1, pD,k

⟩)
(5)

p
(i)
L,k = p

(i)
k|k−1 (1− pD,k)

/(
1−

⟨
p

(i)
k|k−1, pD,k

⟩)
(6)

rU,k(z) =

Mk|k−1∑
i=1

r
(i)
k|k−1

(
1− r(i)

k|k−1

)⟨
p

(i)
k|k−1, ψk,z

⟩
(
1− r(i)

k|k−1

⟨
p

(i)
k|k−1, pD,k

⟩)2

/(
λkck(z)

+

Mk|k−1∑
i=1

r
(i)
k|k−1

⟨
p

(i)
k|k−1, ψk,z

⟩
1− r(i)

k|k−1

⟨
p

(i)
k|k−1, pD,k

⟩


(7)

pU,k(x; z) =

Mk|k−1∑
i=1

r
(i)
k|k−1p

(i)
k|k−1ψk,z

1− r(i)
k|k−1

/Mk|k−1∑
i=1

r
(i)
k|k−1

⟨
p

(i)
k|k−1, ψk,z

⟩
1− r(i)

k|k−1

(8)

where λk and ck(z) are the mean number and prior probability of clutters, and ψk,z =
gk(z|x)pD,k(x) is modeled by the single target likelihood function gk(z|x).

According to r
(i)
L,k|k−1 and rU,k(z), the estimated number of targets is given by:

n̂k =

Mk|k−1∑
i=1

r
(i)
L,k|k−1 +

∑
z∈Zk

rU,k(z) (9)

Finally, we extract the related dynamics of n̂k targets as the states estimates.
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Remark 2.1. Note that the existence probability of newborn target r
(i)
Γ,k is not obviously

to be selected owing to little prior knowledge. Moreover, the updated existence probability

rU,k(z) is proportional to
(
1− r(i)

k|k−1

)/(
1− r(i)

k|k−1

⟨
p

(i)
k|k−1, pD,k

⟩)
= 1 − r

(i)
L,k when the

occurrence probability of clutters λkck(z) approaches 0. On this case, rU,k(z) has very small

value when r
(i)
L,k approximates 1. Thus, the under-estimated n̂k may lead to undetected

targets.

3. The Proposed CBMeMBer Filter.

3.1. Filtering principle. We rewrite (7) as rU,k(z) =
∑Mk|k−1

i=1 r
(i)
U,k(z) +

∑MΓ,k

i=1 r
(i)
U,k(z),

where the ith Bernoulli distribution r
(i)
U,k(z) is defined as:

r
(i)
U,k(z) =

r
(i)
k|k−1

(
1− r(i)

k|k−1

)⟨
p

(i)
k|k−1, ψk,z

⟩
(
1− r(i)

k|k−1

⟨
p

(i)
k|k−1, pD,k

⟩)2

/λkck(z) +

Mk|k−1∑
i=1

r
(i)
k|k−1

⟨
p

(i)
k|k−1, ψk,z

⟩
1− r(i)

k|k−1

⟨
p

(i)
k|k−1, pD,k

⟩


(10)

To boost the existence probability of newborn targets r̂
(i)
Γ,k(z) (i = 1, . . . ,MΓ,k), we

define r̂
(i)
Γ,k by the product of r

(i)
U,k(z) and its information content − log2 r

(i)
U,k(z), i.e.,

r̂
(i)
Γ,k(z) = −r(i)

U,k(z) log2 r
(i)
U,k(z) (11)

In (11), there is log2

(
r
(i)
U,k(z)

)−1

≤
(
r
(i)
U,k(z)

)−1

owing to r
(i)
U,k(z) ≤ 1. Therefore, we

have r̂
(i)
Γ,k(z) ≤ 1 that satisfies the condition of existence probability. We can also achieve

r̂
(i)
Γ,k(z) ≥ r

(i)
U,k(z) under the condition of r

(i)
U,k(z) ≤ 1/2, that is, r̂

(i)
Γ,k(z) can reach a compar-

ative high existence when r
(i)
U,k(z) is relative low. Besides, to avoid overshoot for newborn

target model, the upper bound r
(i)
Γ,k,max(z) = max

(
r
(i)
Γ,k(z)

)
should be set in advance.

Then we have the adaptive birth distribution r
(i)
Γ,k:

r
(i)
Γ,k(z) = min

(
r̂
(i)
U,k(z), r

(i)
Γ,k,max(z)

)
(12)

According to r
(i)
Γ,k and the particle number χ of each target, the number of newborn

particles is L
(i)
Γ,k = χr

(i)
Γ,k. In view of under-estimated number of targets, we define the

threshold of the Bernoulli distribution ε to balance undetected targets after merging and

pruning. When r
(i)
k ≥ ε, n̂k is increased by 1.

3.2. Particle implementation. The particle implementation is derived in this subsec-
tion.

Prediction: Suppose that the multi-Bernoulli posterior multi-target density is πk−1 ={(
r
(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
, and p

(i)
k−1 comprises a set of weighted particles

{(
x

(i,j)
k−1, w

(i,j)
k−1

)}L
(i)
k−1

j=1

at time k − 1:

p
(i)
k−1 (xk−1) =

L
(i)
k−1∑

j=1

w
(i)
k−1δ

(
xk−1 − x(i,j)

k−1

)
(13)

where L
(i)
k−1 is the required number of particles.

Assume the particle set
{(
x

(i,j)
P,k|k−1, w

(i,j)
P,k|k−1

)}L
(i)
k−1

j=1
for survival targets is given by:

x
(i,j)
P,k|k−1 ∼ q

(i)
k

(
·
∣∣∣x(i,j)

k−1, Zk

)
, j = 1, . . . , L

(i)
k−1 (14)
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w
(i,j)
P,k|k−1 = fk|k−1

(
x

(i,j)
P,k|k−1

∣∣∣x(i,j)
k−1

)
pS,k

(
x

(i,j)
k−1

)
w

(i,j)
k−1

/
q
(i)
k

(
x

(i,j)
P,k|k−1

∣∣∣x(i,j)
k−1, Zk

)
(15)

Then the predicted existence probability and posterior density are:

r
(i)
P,k|k−1 = r

(i)
k−1

L
(i)
k−1∑

j=1

pS,k

(
x

(i,j)
k−1

)
w

(i,j)
k−1 (16)

p
(i)
P,k|k−1(xk) =

L
(i)
k−1∑

j=1

w̃
(i,j)
P,k|k−1δ

(
xk − x(i,j)

P,k|k−1

)
(17)

where w̃
(i,j)
P,k|k−1 = w

(i,j)
P,k|k−1

/∑L
(i)
k−1

j=1 w
(i,j)
P,k|k−1. Given that the ith target birth model is

b
(i)
k

(
x

(i,j)
Γ,k |Zk

)
, L

(i)
Γ,k newborn particles

{(
x

(i,j)
Γ,k , w

(i,j)
Γ,k

)}L
(i)
Γ,k

j=1
can be written as:

x
(i,j)
Γ,k ∼ b

(i)
k (·|Zk) , i = 1, . . . , L

(i)
Γ,k (18)

w
(i,j)
Γ,k = pΓ,k

(
x

(i,j)
Γ,k

)/
b
(i)
k

(
x

(i,j)
Γ,k

∣∣∣Zk

)
(19)

To represent MΓ,k newborn tracks using the multi-target density
{(
r
(i)
Γ,k, p

(i)
Γ,k

)}MΓ,k

i=1
, we

define p
(i)
Γ,k with the weight w̃

(i,j)
Γ,k = w

(i,j)
Γ,k

/∑L
(i)
Γ,k

j=1 w
(i,j)
Γ,k , i.e.,

p
(i)
Γ,k(xk) =

L
(i)
Γ,k∑

j=1

w̃
(i,j)
Γ,k δ

(
xk − x(i,j)

Γ,k

)
(20)

Remark 3.1. At time 0, we have in hand r
(i)
Γ,0 and L

(i)
Γ,0. Otherwise, r

(i)
Γ,k and L

(i)
Γ,k = χr

(i)
Γ,k

are utilized in the last filtering cycle.

Update: At time k, suppose the predicted multi-target density is πk|k−1 =
{(
r
(i)
k|k−1,

p
(i)
k|k−1

)}Mk|k−1

i=1
(Mk|k−1 = Mk−1 + MΓ,k), then p

(i)
k|k−1 can be approximated by

{(
x

(i,j)
k|k−1,

w
(i,j)
k|k−1

)}L
(i)
k|k−1

j=1
:

p
(i)
k|k−1(xk) =

L
(i)
k|k−1∑
j=1

w̃
(i,j)
k|k−1δ

(
xk − x(i,j)

k|k−1

)
(21)

where Lk|k−1 = Lk−1 + LΓ,k is the predicted number of particles. Further, (21) can be
rewritten as:

p
(i)
k|k−1(xk) =

L
(i)
k−1∑

j=1

w̃
(i,j)
P,k|k−1δ

(
xk − x(i,j)

P,k|k−1

)
+

L
(i)
Γ,k|k−1∑
j=1

w̃
(i,j)
Γ,k|k−1δ

(
xk − x(i,j)

Γ,k|k−1

)
(22)

Then the updated multi-target density πk=
{(
r
(i)
L,k, p

(i)
L,k

)}Mk|k−1

i=1
∪{(rU,k(z), pU,k(z))}z∈Zk

can be computed by the following equations:

r
(i)
L,k = r

(i)
k|k−1

1−
L

(i)
k|k−1∑
j=1

w
(i,j)
k|k−1pD,k

(
x

(i,j)
k|k−1

)/
1− r(i)

k|k−1

L
(i)
k|k−1∑
j=1

w
(i,j)
k|k−1pD,k

(
x

(i,j)
k|k−1

)
(23)
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p
(i)
L,k(xk) =

L
(i)
k|k−1∑
j=1

w
(i,j)
L,k δ

(
xk − x(i,j)

k|k−1

)
(24)

We compute r
(i)
Γ,k (i = 1, . . . ,MΓ,k) using (12), and then get the sum

∑MΓ,k

i=1 r
(i)
Γ,k(z). As

for other Bernoulli components, we use the following equations:

rU,k(z) =

Mk|k−1∑
i=1

r
(i)
k|k−1

(
1− r(i)

k|k−1

) L
(i)
k|k−1∑
j=1

w
(i,j)
k|k−1ψk,z

(
x

(i,j)
k|k−1

)
1− r(i)

k|k−1

L
(i)
k|k−1∑
j=1

w
(i,j)
k|k−1pD,k

(
x

(i,j)
k|k−1

)
2

/


λkck(z) +

Mk|k−1∑
i=1

r
(i)
k|k−1

L
(i)
k|k−1∑
j=1

w
(i,j)
k|k−1ψk,z

(
x

(i,j)
k|k−1

)

1−
L

(i)
k|k−1∑
j=1

w
(i,j)
k|k−1pD,k

(
x

(i,j)
k|k−1

)



(25)

p
(i)
U,k(xk; zk) =

Mk|k−1∑
i=1

L
(i)
k|k−1∑
j=1

w̃
(i,j)
U,k (z)δ

(
xk − x(i,j)

k|k−1

)
(26)

w̃
(i,j)
L,k (z) = w

(i,j)
L,k

/ L
(i)
k|k−1∑
j=1

w
(i,j)
L,k (27)

w
(i,j)
L,k =

(
1− pD,k

(
x

(i,j)
k|k−1

))
w̃

(i,j)
k|k−1 (28)

w̃
(i,j)
U,k (z) = w

(i,j)
U,k (z)

/Mk|k−1∑
i=1

L
(i)
k|k−1∑
j=1

w
(i,j)
U,k (z) (29)

w
(i,j)
U,k (z) = r

(i)
k|k−1ψk,z

(
x

(i,j)
k|k−1

)
w

(i,j)
k|k−1

/(
1− r(i)

k|k−1

)
(30)

ψk,z

(
x

(i,j)
k|k−1

)
= pD,k

(
x

(i,j)
k|k−1

)
gk

(
zk

∣∣∣x(i,j)
k|k−1

)
(31)

The updated multi-target density is πk =
{(
r
(i)
k , p

(i)
k

)}Mk

i=1
, where Mk =Mk|k−1 + |Zk| is

the updated number of tracks, and p
(i)
k is defined as:

p
(i)
k (xk) =

L
(i)
k∑

j=1

w
(i,j)
k δ

(
xk − x(i,j)

k

)
(32)

Subsequently the operations of merging and pruning are necessary when r
(i1)
k +r

(i2)
k < 1.

If r
(i1)
k > r

(i2)
k , we have the following equations:

r
(i)
k = r

(i1)
k + r

(i2)
k (33)

p
(i)
k (xk) = p

(i1)
k (xk)p

(i2)
k (xk)

/∫
p

(i1)
k (xk)p

(i2)
k (xk)dxk (34)
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State estimation: Due to the merged number of tracks M̂k and the condition r
(i)
k ≥ ε,

the estimated number of targets is updated as n̂k ← n̂k + 1. Finally the states estimates

are given by X̂k =

{∑L
(i)
k|k−1

j=1 w
(i,j)
k x̂

(i,j)
k

}M̂k

i=1

.

4. Numerical Study and Discussions. In this section, a typical numerical study is
presented to compare the proposed CBMeMBer filter with standard filter under 100 Monte
Carlo trails, where the surveillance period is 60s and the sampling period is 1s. Three
targets move with the constant turn (CT) motion and one target has the constant velocity
(CV) motion.

Figure 1 shows the true tracks and measurements. As seen, four targets (T1∼T4)
travel in cluttered area, where T1 moves with velocity of (−20, 0)m/s and turn of −0.5◦/s
from position (1000, 1500)m during 1st∼4ths. T2 travels from position (250, 750)m with
velocity of (−20, 10)m/s and turn of 0.5◦/s during 5th∼50ths. T3 moves with velocity of
(−20,−10)m/s and turn of 1◦/s from position (−250, 1000)m during 10th∼55ths. T4 keeps
CV motion with velocity of (40, 0)m/s from position (−1500, 250)m during 10th∼60ths.
Figure 2 plots the x and y coordinates of true tracks, measurements and two filter es-
timates versus time. It indicates that the position estimates from the standard filter
become poor when targets move close to dense clutter areas, whereas the proposed filter
boosts estimation accuracy. Figure 3 demonstrates the estimated number of targets. Note
that the standard filter cannot exactly evaluate the cardinality, which underestimates one
target on the 19ths and 30ths. On the contrary, the estimated number of targets using the
proposed filter during the whole surveillance period coincides with the ground truth owing
to the adaptive target birth intensity method for obtaining reliable existence probability
of newborn targets. Finally, Figure 4 shows the optimal sub pattern assignment (OSPA)
distance. Note that the tracking performance of the standard filter is worse because it
exaggerates distance error, which has two intensity peaks as a result of underestimated
number of targets. It can be verified that the proposed filter again achieves lower error
as a direct result of always correcting true number and approaching true position.

5. Conclusions. This paper discusses an improved CBMeMBer filter for the MTT. It
applies adaptive target birth intensity method to achieve the existence probability of
newborn targets for correcting target-number estimates. The numerical study suggests
that the proposed CBMeMBer filter has remarkable improvement in tracking performance
with promising results. As future developments of this work, we will shorten running time
under the current tracking accuracy of this filter.

Figure 1. Target tracks and measurements
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Figure 2. Target tracks and position estimates in x-y coordinates

Figure 3. Target number and estimates

Figure 4. OSPA distance



86 B. LI, S. WANG, J. ZHAO AND X. JIA

Acknowledgment. This work was jointly supported by the National Natural Science
Foundation of China (Nos. 51679116, 61502216), the Doctoral Scientific Research Foun-
dation Guidance Project of Liaoning Province (No. 201601343), the Scientific Research
Project of Education Department of Liaoning Province (No. L2015230), and the 2015
Doctoral Scientific Research Foundation of Liaoning University of Technology.

REFERENCES

[1] B. T. Vo, B. N. Vo and A. Cantoni, The cardinality balanced multi-target multi-Bernoulli filter and
its implementations, IEEE Trans. Signal Processing, vol.57, no.2, pp.409-423, 2009.

[2] R. Mahler, Advantages in Statistical Multisource-Multitarget Information Fusion, Artech House,
Norwood, 2014.

[3] E. Baser, T. Kirubarajan and M. Efe, Improved MeMBer filter with modeling of spurious targets,
Proc. of the 16th International Conference on Information Fusion, pp.813-819, 2013.

[4] G. H. Zhang, F. Lian and C. Z. Han, CBMeMBer filters for nonstandard targets, I: Extended targets,
Proc. of the 17th International Conference on Information Fusion, pp.1-6, 2014.

[5] H. Chen and C. Z. Han, A new sequential Monte Carlo implementation of cardinality balanced
multi-target multi-Bernoulli filter, Acta Automatica Sinica, vol.42, no.1, pp.26-35, 2016.

[6] C. Ouyang and H. B. Ji, Improved multi-target multi-Bernoulli filter, IET Radar, Sonar and Navi-
gation, vol.6, no.6, pp.458-464, 2012.

[7] N. Chong, S. H. Wong, B. T. Vo and N. Sven, Multiple moving speaker tracking via DUET-
CBMeMBer filter, Proc. of the 19th International Conference on Intelligent Sensors, Senor Networks
and Information Processing, pp.1-6, 2014.


