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Abstract. A genetic algorithm (GA) is a classic evolutionary algorithm, whose per-
formance is dramatically influenced by convergence speed and solving precision. During
GA selection operation, the Lévy distribution with different parameters in sampling for
different sub-populations was used to generate new individuals with similar character-
istics. In addition, based on the population-based algorithm portfolios (PAP) strategy,
genetic operations were performed for multiple populations by integrating the advantages
of Lévy distributions with different parameters, thereby improving the algorithm capabil-
ity of searching and solving various problems. Simulation results on different numerical
optimization functions show that the algorithm can effectively avoid the problem of pre-
mature convergence, thus resulting in high-quality solutions.
Keywords: Genetic algorithm, Lévy distribution, Numerical optimization problems,
Population-based algorithm portfolios

1. Introduction. As a global optimal algorithm, the genetic algorithm (GA) [1] has been
widely applied in scientific and industrial fields. The standard genetic algorithm (SGA) is
a global search algorithm, where the search should focus on the whole search space in the
early stage to avoid the premature convergence, while the strong local searching ability
is required in the later stage to refine the search. Therefore, crossover, and mutation
operations need to be improved [2-9]. Yao et al. [6] adopted the Cauchy distribution dur-
ing the mutation stage of evolutionary programming and obtained promising results for
most real value optimization problems. However, merely using the Cauchy distribution is
not beneficial for algorithm convergence during late stages. Peng et al. [7,8] proposed the
Lévy distribution-based operator for evolutionary problems and observed significantly im-
proved performance. He and Yang [9] developed a differential evolution algorithm based
on adaptive mutation and the Lévy distribution, which demonstrated marked increase in
convergence speed. Peng et al. [10] reported the population-based algorithm portfolios
(PAP) strategy, which effectively incorporates the advantages of different sub-populations
and showed promising solving ability for different types of problems. Here, we propose
a Lévy distribution-based selection operator that allows independent evolution of mul-
tiple sub-populations. The PAP strategy is used to integrate the advantages of Lévy
distributions with different parameters, with the expectation that new individuals with
population characteristics and high fitness scores would be generated during the selec-
tion stage, thereby avoiding the premature problem in the early stage and accelerating
convergence in the late stage.

The rest of the paper is organized as follows. Section 2 introduces some basics about
the Lévy distribution. The detail of the proposed algorithm is given in Section 3. Section
4 presents the simulation results and analyses. Finally, conclusions are drawn and some
future work is given in the last section.
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2. Lévy Distribution. The Lévy distribution is a stable distribution proposed by Lévy
in the 1930s [11]. It is expressed as:

Lα,γ(y) =
1

π

∞
∫

0

e−γqα

cos(qy)dq (1)

In the equation, e = 2.718, y ∈ R, γ > 0 is the scale parameter, 0 < α ≤ 2 is the
distribution index, and q > 0 is a variable real value. The Lévy distribution is a collection
of distributions of the same type, and the common Gaussian distribution and Cauchy
distribution are two special cases: α = 2 depicts a Gaussian distribution; α = 1 indicates
a Cauchy distribution.

Figure 1 shows the curves of probability density for a Lévy distribution [X ∼ Lévy(γ, δ)],
Gaussian distribution [X ∼ N(µ, σ2)], and Cauchy distribution [X ∼ Cauchy(γ, δ)]. Herein,
γ is the scale parameter, δ is the position parameter, µ is the average value, and σ is
standard deviation. It can be observed that despite similar curves, the distribution ranges
of different probability density curves are distinct. The demanded random variables could
be generated by adjusting the relative parameters of the Lévy distribution.

Figure 1. Comparison of probability density curves

3. Improved GA. As earlier mentioned, GA requires fast convergence, as well as popu-
lation diversity. In addition, different optimization problems require different parameters.
A GA was proposed based on a Lévy distribution probability operator, and the PAP strat-
egy was adopted to integrate the advantages of a Lévy distribution with different control
parameters, thereby improving algorithm performance in solving different optimization
problems. Table 1 shows the pseudo-codes of the algorithm.

The key focus of the present study was improvement of the selection operator. A GA
generally falls within the local optimum due to a lack of excellent genetic types. Based
on this particular issue, the Lévy distribution was used in the selection stage. A Lévy
distribution has a probability density function that varies with different parameters, thus
ensuring that the genetic represents the characteristics of the current population, as well
as maintains the population diversity for different optimization problems, thereby accel-
erating convergence and avoiding premature problems. The pseudo-codes of an improved
selection operator are presented in Table 2.
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Table 1. Pseudo-codes of the improved genetic algorithm

1. Initialize N sub-populations with the size of M .

2. While meeting termination condition, do

3. Assess the fitness scores of all individuals in N sub-populations

4. For i = 1 : N

5. Use Lévy distribution-based GA for the ith sub-population, α = αi

6. End for

7. If the number of specified genetic generations has been reached,

8. For i = 1 : N

9. Except for sub-population i, choose t excellent individuals from each of the

rest N − 1 sub-populations

10. Combine all individuals of sub-population i with the above (N − 1) × t ind-

ividuals to form a new sub-population.

11. Select M excellent individuals from the new sub-population to form the new

sub-population i.

12. End for

13. End if

14. End while

15. Compare the optimal solutions of N sub-populations, and take the maximum val-

ue as the optimal solution.

Table 2. Pseudo-codes of the improved selection operator

1. For i = 1 : N

2. Sort the M individuals in the ith sub-population according to fitness scores.

3. Divide the ith sub-population into K sub-groups.

4. For the first S subgroups of the ith sub-population, new individuals are generated

according to the Lévy distribution with specified parameters.

5. K candidate pools are generated for the ith sub-population

6. Roulette is performed for the K subgroups of the ith sub-population

7. End for

4. Function Testing. In the present study, 15 real value optimization functions [6,13]
were used to test the performance of improved GAs (Table 3). The value of n equals 30.
The SGA, Gaussian, and Cauchy selection-based genetic algorithm (GCSGA) and Lévy
distribution-based genetic algorithm were compared. The genetic parameters and number
of assessments were essentially the same. For SGA, the number of individuals was 200, the
crossover probability was 0.7, mutation probability was 0.07, and number of assessments
was 2000000. For GCSGA, the number of individuals in the two sub-populations was
both 100. For LSGA, the number of individuals in the four sub-populations was all 50.
The α value of the Lévy distribution was set to 1.0, 1.3, 1.7, and 2.0 [8], respectively.
During selection, four sub-populations were divided into 25 groups, the individuals in the
first four groups [12] showed probability distribution disturbances. The sub-populations
communicate with each other every 500 generations [10] with respect to the maximal
value.

Table 4 shows the mean values and standard deviations of the 15 real value optimization
functions obtained by SGA, GCSGA, and LSGA, which were calculated based on 50
tests. The numbers in bold indicate a small mean value or standard deviation. A small
mean value means preferable algorithm performance, whereas a small standard deviation
indicates that the algorithm is relatively stable.
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Table 3. Testing function

Test Function Domain fmin

f1(x) =
∑n

i=1
x2

i [−100, 100]n 0

f2(x) =
∑n

i=1
|xi| +

∏n

i=1
|xi| [−10, 10]n 0

f3(x) =
∑n

i=1

(

∑i

j=1
xj

)2

[−100, 100]n 0

f4(x) =
∑n−1

i=1

[

100(xi+1 − x2
i )

2 + (xi − 1)2
]

[−30, 30]n 0

f5(x) =
∑n

i=1
(⌊xi + 0.5⌋)2 [−100, 100]n 0

f6(x) =
∑n

i=1
ix4

i + random[0, 1) [−1.28, 1.28]n 0

f7(x) =

√

∑n

i=1
|xi|

2+4
i−1

n−1 + f ∗
7 [−100, 100]n 0

f8(x) =
∑n

i=1
−xi sin

(

√

|xi|
)

[−500, 500]n −12569.5

f9(x) =
∑n

i=1
[x2

i − 10 cos(2πxi) + 10] [−5.12, 5.12]n 0

f10(x) = −20 exp
(

−0.2
√

1

n

∑n

i=1
x2

i

)

[−32, 32]n 0

− exp
(

1

n

∑n

i=1
cos 2πxi

)

+ 20 + e

f11(x) = 1

4000

∑n

i=1
x2

i −
∏n

i=1
cos

(

xi√
i

)

+ 1 [−600, 600]n 0

f12(x) = π

n

{

10 sin2(πy1) +
∑n−1

i=1
(yi − 1)2 [1 + 10 sin2(πyi+1)]

[−50, 50]n 0

+ (yn − 1)2} +
∑n

i=1
µ(xi, 10, 100, 4)

f13(x) = 0.1
{

sin2(3πx1) +
∑n−1

i=1
(xi − 1)2

[

1 + sin2(3πxi+1)
]

[−50, 50]n 0

+(xn − 1)2[1 + sin2(2πxn)]
}

+
∑n

i=1
µ(xi, 5, 100, 4)

f14(x) = min
(
∑n

i=1
(

⌢

xi − µ0)
2, dn + s

∑n

i=1
(

⌢

xi − µ1)
2
)

[−100, 100]n 0

+10
(

n −
∑n

i=1
cos(2π

⌢

z i)
)

+ f ∗
14

f15(x) = g1(g2(z1, z2)) + g1(g2(z2, z3)) + . . .
[−100, 100]n 0

+g1(g2(zn−1, zn)) + g1(g2(zn, z1)) + f ∗
15

Based on function properties, it can be seen that functions f1(x) ∼ f7(x) were unimodal.
Figure 2(a) shows the two-dimensional structure of function f5(x), which is a wave trough.
Thus, large scope searching in the solution space during the early stage of assessment
could speed up the solving process, whereas searching the solution space close to optimal
solutions in the late stage could effectively avoid the premature phenomena. Figures 3(a)
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Table 4. Comparison of testing results

Function

SGA GCSGA LSGA

Mean Standard Mean Standard Mean Standard

Value Deviation Value Deviation Value Deviation

f1 162.92549 298.84232 0.04682 0.04936 0.00025 0.00009

f2 1.16002 1.28994 0.37131 0.35841 0.16256 0.29613

f3 116737.33104 201398.43343 7.63085 11.28067 0.06991 0.04727

f4 5248.62935 13880.22732 38.31525 33.70466 49.39222 30.97531

f5 139.42000 199.67935 1.26000 2.84119 0.82000 1.26000

f6 0.17082 0.34834 0.01795 0.01434 0.01215 0.00746

f7 0.016471 0.02565 0.00294 0.00737 0.00293 0.00106

f8 −12478.01 91.65929 −12564.56 23.19129 −12569.48 0.04370

f9 3.89380 3.91445 0.77023 0.95800 0.63598 0.96998
f10 2.89543 1.92542 0.70798 0.66228 0.01236 0.00265

f11 2.20201 1.87872 0.03469 0.02012 0.00602 0.00817

f12 41273.94651 144407.05772 0.000008 0.000019 0.00000026 0.0000001

f13 20723.81112 45419.07202 0.00041 0.00215 0.001518 0.00428
f14 35.35896 4.8812 33.54111 2.25846 32.63503 2.43337
f15 34.49848 74.94913 1.35058 0.35231 1.29075 0.39197

and 3(b) compared different fitness variation curves, which clarified the influences of α in
the Lévy distribution on convergence speed and solving resolution.

The rest of the functions were multi-modal. Figures 2(b), 4(a), and 4(b) show the two
dimensional structures of f9(x), f10(x), and f12(x). Because there were several wave
troughs, these may easily fall into the premature phenomena, which is not good for
improving solving precision. Therefore, different α values were used in the improved
algorithm; they sequentially played a major role in different stages, thereby ensuring
promising results in different stages. In particular, the two dimensional structure of f12(x)
is flat and smooth and shows various wave troughs, and thus it is very difficult to avoid
the premature phenomena with random solution space searching. The fitness curves
in Figures 5(a) and 5(b) also prove that the improved algorithm searched the solution
space close to optimal solutions at different scales, thereby accelerating convergence and
avoiding premature.

(a) (b)

Figure 2. Two dimensional structures of functions f5 and f9
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(a) (b)

Figure 3. Fitness variation curve of function f5

(a) (b)

Figure 4. Two dimensional structures of functions f10 and f12

(a) (b)

Figure 5. Fitness variation curve of function f9
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5. Conclusions. Using the Lévy distribution of different parameters for different sub-
populations was proposed during the selection stage to direct the search in the solu-
tion space. The PAP strategy was used to integrate the advantages of different sub-
populations, which not only ensured population diversity, but, to a certain extent, en-
hanced searching efficiency as well. By testing different types of functions, we have shown
that the improved algorithm can significantly increase the convergence speed in the late
stages and prevent the occurrence of premature phenomena in the early stage. The next
step is to improve the performance of the improved algorithm in terms of functions with
high dimensions. Additionally, parallel computer optimization will also be conducted to
reduce related consumption.
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