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Abstract. Smart Grid is an emerging power system to provide efficient electricity man-
agement by leveraging the advanced information technologies. Power optimized distribu-
tion is a main concern in Smart Grid. This letter first makes a practical analysis for
the stochastic features of power assumption based on the practical electricity consumption
dataset. In particular, we build a stochastic theory model for power assumption based on
the Markov chain model, and derive a stochastic assessment method in theory. Then, we
analyze how the power assumption dataset satisfies the stochastic feature. According to
the statistics analysis, the results show that practical power assumption may not fit the
Markov stochastic model. Therefore, the inaccuracy can be introduced if directly adopt-
ing the straightforward Markov based prediction without any amendment. To our best
knowledge, this study is the first attempt to test the accuracy of the stochastic property
of power assumption in Smart Grids.
Keywords: Stochastic property, Markov chain, Power assumption, Data collection,
Smart Grids

1. Introduction. Electrical power industry is undergoing rapid developments and mov-
ing to the Smart Grid [1]. Smart Grid is believed as a next generation electric power grid
system with many modern information technologies, such as Internet, automated control,
power metering, and modern energy management [2]. In general, a Smart Grid includes
a variety of operational and energy measures for power prediction, such as smart meters,
smart appliances, and smart sensing components. Accurate forecasting provides benefits
in the real-time power generation, efficient energy management, and economic cost saving.
However, the prediction accuracy is highly related with the geographical locations as well
as the time periods. Stochastic property of power assumption greatly increases the power
prediction difficulty in Smart Grids [3,4].

The power prediction models can be roughly divided into four types: regression method,
time series method, expert-based method and neural network [5,6,10]. The prediction ac-
curacies rely on the distribution of original series as well as a large amount of observed
data. Recently, some studies conduct the power assumption predictions using the Markov-
based models. For example, Yang et al. [6] presented a support vector machine enhanced
Markov model for short-term wind power forecast. Zhao et al. [7] proposed a high-order
Markov chain based time-varying weighted average method to predict the monthly elec-
tricity consumption. Zhou et al. [8] described a fuzzy probability-based Markov chain
model for forecasting regional long-term electric power demand. Ardakanian et al. [9]
proposed parsimonious Markovian reference models of home load. Kumar and Jain [10]
proposed a Grey-Markov model to forecast the consumption of conventional energy. He
et al. [11] motivated data-driven tools to perceive the complex grids in high dimension
and proposed a big data architecture design for Smart Grids based on random matrix
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theory. However, most of them only give an assumption considering that power assump-
tion follows a Markov process without a detailed analysis of the stochastic properties of
power assumption. Any impractical artificial assumption may have a great impact on the
prediction results.

This letter focuses on an in-depth investigation on the stochastic properties of power
assumption based on a set of practical electricity consumption. The main contributions
are summarized as follows.

(1) This letter collects a set of first-hand practical electric power data in a community,
which may provide benefits to more researchers on power assumption analysis.

(2) This letter builds a stochastic theory model for power assumption based on the Markov
chain model, and derives a simple stochastic assessment method. It can be used to
evaluate how power assumption fits the Markov randomness.

(3) This letter makes experimental analysis of practical power assumption dataset and
finds that power assumption may not fit the Markov stochastic model. Finally, this
letter proposes some guides and suggestions for the power assumption prediction.

The rest of this letter is organized as follows. Section 2 introduces the theory model-
ing for the stochastic assessment method. Section 3 elaborates the experiments details.
Section 4 presents the statistics analysis and results. Finally, Section 5 concludes this
work.

2. Theory Modeling. Markov process is usually used to model a random system in
which the next state only depends on the current state. In this section, we build a
stochastic theory model for power assumption based on the Markov chain model.

Let Pij(t) = P{Xt+s = j/Xs = i} denote the probability that the state being in state
i presently and in state j a time t later. A Markov chain holds the following natures:

Pij(t) ≥ 0, i, j ∈ E (1)∑
j∈E

Pij(t) = 1 (2)

Pij(t + s) =
∑
k∈E

Pik(t)Pkj(s) (3)

According to the Taylor’s formula,

Pij(∆t) = Pij(0) + P ′
ij(ξ)∆t + o(∆t)

= Pij(0) + qij∆t + o(∆t), ξ ∈ (0, ∆t)
(4)

where qij is element in the transition rate matrix Q, which is called the infinitesimal
transition rate. It can be calculated by:

qij = lim
∆t→0

Pij(∆t) − Pij(0)

∆t
(5)

According to the Formula (5), when ∆t → 0, qij equals the derivative of transition
probability function.

Consider

Pij(0) =

{
1, i = j
0, i ̸= j

(6)

Then, we have

qij =


lim

∆t→0

Pij(∆t) − 1

∆t
, i = j

lim
∆t→0

Pij(∆t) − 0

∆t
, i ̸= j

(7)
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Let stochastic process Ni(t) (t ≥ 0) denote the total number of state transitions after
the Markov chain jumps into the state i. It is immediate that Ni(t) is a counting process.
The stochastic process Ni(t) (t ≥ 0) is a Poisson process.

Let Pii(∆t) denote the probability that the state being in state i presently and in state
i a time ∆t later. When t → 0, we have

Pii(∆t) = P{X(t + ∆t) = i, Ni(∆t) = 0/X(t) = i}
+P{X(t + ∆t) = i, Ni(∆t) ≥ 2/X(t) = i}

= e−λi∆t + o(∆t)

= 1 − λi∆t + o(∆t)

(8)

Based on the theoretical analysis, we derive a simple stochastic assessment method
for power assumption. We denote the lifetime of state i as a random variable T . Let
Pi(T ≤ ∆t) denote the probability that the Markov process at state i stays for no longer
than ∆t. Then, Pi(T ≤ ∆t) is the complementary probability of Pii(∆t). From Formula
(8), we can get

Pi(T ≤ ∆t) = 1 − Pii(∆t) = 1 − e−λi∆t (9)

The lifetime of state i follows the exponential distribution and λi can be acquired by
the curving fitting with the exponential distribution during the practical analysis.

3. Experiments. In this section, we make a practical analysis of power assumption in
Smart Grids based on a large amount of power assumption data. To analyze the electricity
consumption stochastic properties, we select a piece of power equipment of a community
and collect the first-hand practical electric power data (this dataset can be obtained with
the permission of the authors). The data is collected every half an hour and with duration
of a month (form August 10th, 2015 to September 9th 2015). The dataset has about 1440
data samples. Figure 1 shows the change of the electric power within 14.5 days in a
community. As we can see, electric power distributes between 200 kW to 400 kW; clearly,
it presents periodic changes. Figure 2 further shows the change of electric power in one
cycle, which is about one day.

In order to further explore its periodic variation, we calculate the average value of the
electric power within a month at each moment of the day, and analyze the rules of change.
The results are shown in Figure 3. We can see that the change trend of Figure 3 is basically
the same as Figure 2, with two peaks of electric power in 12:00 and 19:30 around and a
valley in current 5:00 each day. It shows that the electric power first decreases before 5
am and then increases until 10 am. From 13 pm, it further starts increasing until 21 pm,
then the electric power decreases greatly until 0 am.

Figure 1. Electric power
within 14.5 days

Figure 2. Electric power in
one cycle
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Figure 3. The change of average electric power

In order to analyze and process the data more convenient, as well as further explore the
distribution rule followed by the duration of different electric power sections, we discretize
the electric power. The formula of discretization is as follows:

S =
P

max(P ) + 1
· DR + 1 (10)

where S is the state, P is the electric power, and DR is the discretization range.
Figure 4 shows the change of average electric power after the discretization (DR = 6)

in a day. We can see that the states 3 and 4 appear many times in a row. However,
other discretization states appear rarely. Specifically, the state of 3 appears eleven times
in total, and the state 4 occurs more often. For example, between 6:00 to 10:00, the state
4 appears eight times, and between 12:00 to 17:00, this state appears ten times. However,
other states only appear a couple of times. The state 5 occurs nine times in total, but
there is no continuous emergence of this state, which is not like the state three and four.

Figure 5 shows the statistical and fitting results of the state 4 (DR = 6). The histogram
is the result of statistics, while the asterisk-marked curve is a fitting result with the
negative exponential distribution. Clearly, we find that the fitting results are very poor.

Figure 4. The power dis-
cretization (DR = 6)

Figure 5. The statistics re-
sults (DR = 6)

4. Statistics Analysis. To further test the accuracy of results, we further analyze other
cases with different DR values based on the collected datasets. For example, when DR = 7
and DR = 8, the results of statistics are as Figures 6-9.

Figure 6 shows the change of electric power average after discretization (DR = 7).
In this situation, we find that the state 7 occurs in the least number of times, and the
numbers are relatively bigger in other states. Furthermore, the state 3 appears very
continuously. Figure 7 shows the statistical and fitting results of the state 4 (DR = 7).
Figure 8 shows that the state 8 appears in the least number of times, and the occurrences
of other states are relatively frequent, especially in the states 5 and 7. Figure 9 shows
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Figure 6. The power dis-
cretization (DR = 7)

Figure 7. The statistics re-
sults (DR = 7)

Figure 8. The power dis-
cretization (DR = 8)

Figure 9. The statistics re-
sults (DR = 8)

Table 1. Statistics analysis results

Deviation DR = 6 DR = 7 DR = 8 DR = 9
S = 3 30.57 44.90 50.21 19.22
S = 4 42.95 82.43 64.41 50.43
S = 5 39.60 59.65 65.48 108.7

the statistical and fitting results of the state 4 (DR = 8). We further find that the fitting
effect is very poor from the diagram.

Table 1 summarizes all statistics results. Through the above analysis, we can find that
it is very poor when the duration of Electric Power State (EPS) is fitted by negative
exponential distribution. Therefore, it is not strict that the duration of EPS is in accord
with negative exponential distribution mentioned in previous studies. Therefore, the
inaccuracy can be brought naturally if directly adopting the straightforward Markov based
prediction without any amendment.

5. Conclusions. This letter makes a detailed analysis of stochastic property of power
assumption through practical data sampling, averaging, status discretization, probability
computing and model fitting. In particular, it analyzes how the power assumption satisfies
the Markov stochastic features. In future work, we will further analyze power assumption
data and explore its stochastic properties to build accurate power prediction solutions.
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